We investigate the origin of diffusion in non-chaotic systems. As an example, we consider 1-d map models whose slope is everywhere 1 (therefore the Lyapunov exponent is zero) but with random quenched discontinuities and quasi-periodic forcing. The models are constructed as non-chaotic approximations of chaotic maps showing deterministic diffusion, and represent one-dimensional versions of a Lorentz gas with polygonal obstacles (e.g., the Ehrenfest wind tree model). In particular, a simple construction shows that these maps define non-chaotic billiards in space-time. The models exhibit, in a wide range of the parameters, the same diffusive behavior of the corresponding chaotic versions. We present evidence of two sufficient ingredients for diffusive behavior in one-dimensional, non-chaotic systems: i) a finite-size, algebraic instability mechanism, and ii) a mechanism that suppresses periodic orbits.