Currently, fiber Bragg gratings obtained on the basis of photoinduced optical fibers doped with a high concentration of germanium oxide are used as highly sensitive sensors.
However, it is worth noting a significant drawback – the manufacturing technology of optical fibers doped with germanium is expensive.
When recording Bragg gratings in a standard telecommunication fiber, where the molar concentration of germanium in the fiber core is from 3 % to 5 %, interference occurs due to very low and insufficient light sensitivity. Thus, an important role is played by solving the problem of low photosensitivity of standard telecommunication fibers for recording Bragg gratings.
This paper presents the results of studies of the spectral characteristics of fiber Bragg gratings based on standard telecommunication fibers pre-saturated with hydrogen to increase photosensitivity. According to the results obtained, it was found that under the action of UV radiation in the presence of hydrogen, the photosensitivity of the fiber increases and the Bragg wavelength shift is associated with the saturation of the fiber with hydrogen, the effective modulation amplitude of the induced refractive index is equal to 1.2 with a refractive index of 1.438. This work proves that the VBR recorded in the S pre-saturated in hydrogen for 12 days is characterized by increased photosensitivity.
The experimental results obtained make it possible to use a Bragg fiber array based on a standard telecommunications optical fiber saturated with hydrogen in the field of telecommunications, seismology, engineering geology as fiber-optic sensors of pressure, deformation, temperature, rotation and rotation, including in extreme environmental conditions