ABSTRACT:With the rapid development of sensor networks and Earth observation technology, a large quantity of disaster-related data is available, such as remotely sensed data, historic data, cases data, simulation data, disaster products and so on. However, the efficiency of current data management and service systems has become increasingly serious due to the task variety and heterogeneous data. For emergency task-oriented applications, data searching mainly relies on artificial experience based on simple metadata index, whose high time-consuming and low accuracy cannot satisfy the requirements of disaster products on velocity and veracity. In this paper, a task-oriented linking method is proposed for efficient disaster data management and intelligent service, with the objectives of 1) putting forward ontologies of disaster task and data to unify the different semantics of multi-source information, 2) identifying the semantic mapping from emergency tasks to multiple sources on the basis of uniform description in 1), 3) linking task-related data automatically and calculating the degree of correlation between each data and a target task. The method breaks through traditional static management of disaster data and establishes a base for intelligent retrieval and active push of disaster information. The case study presented in this paper illustrates the use of the method with a flood emergency relief task.