In modern cloud data centers, reconfigurable devices can be directly connected to a data center's network. This configuration enables FPGAs to be rented for acceleration of dataintensive workloads. In this context, novel scheduling solutions are needed to maximize the utilization (profitability) of FPGAs, e.g., reduce latency and resource fragmentation. Algorithms that schedule groups of tasks (clusters, packs), rather than individual tasks (list scheduling), well match the functioning of FPGAs. Here, groups of tasks that execute together are interposed by hardware reconfigurations. In this paper, we propose a heuristic based on a novel method for grouping tasks. These are gathered around a high-latency task that hides the latency of remaining tasks within the same group. We evaluated our solution on a benchmark of almost 30000 random workloads, synthesized from realistic designs (i.e., topology, resource occupancy). For this testbench, on average, our heuristic produces optimum makespan solutions in 71.3% of the cases. It produces solutions for moderately constrained systems (i.e., the deadline falls within 10% of the optimum makespan) in 88.1% of the cases.