As the number of cores on a chip increases, power consumed by the communication structures takes a significant portion of the overall power budget. In this article, we first propose a circuit-switched interconnection architecture which uses crossroad switches to construct dedicated channels dynamically between any pairs of cores for nonhuge application-specific SoCs. The structure of the crossroad switch is simple, which can be regarded as a NoC-lite router, and we can easily construct a low-power on-chip network with these switches by a system-level design methodology. We also present the design methodology to tailor the proposed interconnection architecture to low-power structures by two proposed optimization schemes with profiled communication characteristics. The first scheme is power-aware topology construction, which can build low-power application-specific interconnection topologies. To further reduce the power consumption, we propose the second optimization scheme to predetermine the operating mode of dual-mode switches in the NoC at runtime. We evaluate several interconnection techniques, and the results show that the proposed architecture is more low-power and high-performance than others under some constraints and scale boundaries. We take multimedia applications as case studies, and experimental results show the power savings of power-aware topology approximate to 49% of the interconnection architecture. The power consumption can be further reduced approximately 25% by applying partially dedicated path mechanism.
With the gradually fading distinction between hardware and software, it is now possible to relocate tasks from a microprocessor to reconfigurable logic and vice versa. However, existing hardware-software scheduling can rarely cope with such runtime task relocation. In this work, we propose a new Relocatable Hardware-Software Scheduling (RHSS) method that not only can be applied to dynamically relocatable hardware-software tasks, but also increases the reconfigurable hardware resource utilization, reduces the reconfigurable hardware resource fragmentation with realistic placement methods, and makes best efforts at meeting the real-time constraints of tasks. The feasibility of the proposed relocatable hardware-software scheduling algorithm was proved by applying it to some randomly generated examples and a real dynamically reconfigurable network security system example. Compared to the quadratic time complexity of the state-of-the-art Adaptive Hardware-Software Allocation (AHSA) method, RHSS is linear in time complexity, and improves the reconfigurable hardware utilization by as much as 117.8%. The scheduling and placement time and the memory usage are also drastically reduced by as much as 89.5% and 96.4%, respectively. -C. 2010. Scheduling and placement of hardware/software real-time relocatable tasks in dynamically partially reconfigurable systems.
As the number of cores on a chip increases, power consumed by the communication structures takes significant portion of the overall power-budget. The individual components of the SoCs will be heterogeneous in nature with widely varying functionality and communication requirements. The communication topology should possibly match communication workflows among these components. In this paper, we first propose an interconnection architecture for SoC, which uses crossroad switches to construct a dedicated communication path dynamically between any two cores. We then present a design methodology for constructing network on chip (NoC) for application-specific computer systems with profiled communication characteristics. We design a core placement tool, which automatically maps cores to a communication topology such that we can minimize the total communication energy. Experimental results show that the design methodology can generate optimized on-chip networks with fewer resources than meshes and tori, and the power saving approximates to 40%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.