2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) 2011
DOI: 10.1109/icassp.2011.5946906
|View full text |Cite
|
Sign up to set email alerts
|

Time-frequency segmentation of bird song in noisy acoustic environments

Abstract: Recent work in machine learning considers the problem of identifying bird species from an audio recording. Most methods require segmentation to isolate each syllable of bird call in input audio. Energy-based time-domain segmentation has been successfully applied to low-noise, single-bird recordings. However, audio from automated field recorders contains too much noise for such methods, so a more robust segmentation method is required. We propose a supervised timefrequency audio segmentation method using a Rand… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1
1

Citation Types

0
37
0
3

Year Published

2012
2012
2020
2020

Publication Types

Select...
6
3
1

Relationship

1
9

Authors

Journals

citations
Cited by 57 publications
(43 citation statements)
references
References 7 publications
0
37
0
3
Order By: Relevance
“…A number of existing attempts to automate the identification of birds have used audio rather than visual signals, such as (Briggs et al, 2009;Neal et al, 2011;Lopes et al, 2011;Bardeli et al, 2010). The use of audio signals has some attractive features; species typically have distinctive calls, and no line of sight is necessary to detect audio.…”
Section: Existing Workmentioning
confidence: 99%
“…A number of existing attempts to automate the identification of birds have used audio rather than visual signals, such as (Briggs et al, 2009;Neal et al, 2011;Lopes et al, 2011;Bardeli et al, 2010). The use of audio signals has some attractive features; species typically have distinctive calls, and no line of sight is necessary to detect audio.…”
Section: Existing Workmentioning
confidence: 99%
“…Las vocalizaciones de algunos animales se han jerarquizado, por ejemplo en las aves, éstas se dividen en cuatro niveles: notas, sílabas, frases y cantos [42]; en la literatura se encuentran varios trabajos orientados a la clasificación de sílabas [4], [32], [35], [37], [42], [43]. Los métodos de segmentación más básicos están diseñados para detectar las regiones con mayor energía [44], sin embargo, en otros mé-todos más elaborados se busca detectar trayectorias características en las representaciones tiempo-frecuencia [37], [41], [45].…”
Section: Segmentaciónunclassified
“…computing a new feature vector on a window of n frames, to get new feature vectors that are representative of longer segments. The idea is close to the standard syllable extraction step that is used in most of methods for bird identification [12,2,1], but is much simpler to implement. In our case we considered segments of about 0.5 second duration (i.e.…”
Section: Windowingmentioning
confidence: 99%