With increases in the demand for faster electronic switching, requirements for higher operating voltages and currents, and the need to perform under harsh environments while operating at even higher frequencies, the research focus in photoconductive semiconductor switch (PCSS) technology has shifted to wide bandgap semiconductors. Here, we examine the possibility of pulse compression in carbon-doped PCSS devices based on the negative differential mobility concept for faster operation. Monte Carlo simulations are used to build in and model various effects on electron transport including degeneracy, charge polarization, and scattering within a three-valley model fitted to bandstructure calculations. The focus is on exploring the density dependence of pulse compression. Thresholds for the biasing fields naturally emerge. Predictive analysis of the output full-width half-maximum (FWHM) current waveforms, as well as the dynamics of the internal charge cloud behavior, and occupancy of the various valleys within GaN are all obtained. Our results show that an increase in carrier density can increase pulse compression and create pulse-widths that are smaller than the FWHM of the input optical excitation. This bodes well for enhanced repetition rates. Variations produced by moving the laser spot along the GaN PCSS length are also examined. Though data for GaN are not yet available, the trends compare well qualitatively with previous reports for GaAs.