A parallel-flow exhaust hood is an effective ventilation device to control dust and toxic pollutants and protect the occupational health of workers, whether it is used alone or combined with a uniform air supply hood in a push–pull ventilation system. Some scholars have studied the outside air flow characteristics of the conventional exhaust hood with non-uniform air speed at the hood face, but the law of velocity variation outside the parallel-flow exhaust hood is not clear at present. Therefore, this paper uses the dimensionless method to study the center-line velocity change regime in a parallel-flow square exhaust hood based on simulation and experimental data. The results show that the dimensionless center-line velocity has a good change law with the characteristic length of exhaust hood in a parallel-flow square exhaust hood, which can eliminate the influence of hood face velocity and the hood size on the velocity change regime; and the experimental data is basically consistent with the calculated data, which shows that the regression equation method is reliable.