Lithium-ion batteries (LIBs) provide the largest source of electrical energy storage today. This paper covers the use of comminution processes and, thus, crushers and mills for particle breakage and dispersing, as well as classifiers for particle separation within the process chain, from the raw material to the final lithium battery cell and its recycling at end of life. First of all, the raw materials for the active material production have to be produced either by processing primary raw materials, or by recycling the spent lithium batteries. The end-of-life battery cells have to be shredded, the materials separated and then milled in order to achieve the so-called black mass, which provides a secondary material source with very valuable components. Using these materials for the synthesis of the cathode active materials, milling has to be applied in different stages. The natural graphite, increasingly used as anode material, has to be designed in mills and classifiers for achieving targeted properties. Nanosized silicon is produced by nanomilling using stirred media mills as a primary option. Conductive additives for LIBs, like carbon black, have to be dispersed in a solvent with machines like planetary mixers, extruders or stirred media mills. In the future, mechanochemical synthesis of solid electrolytes will especially require additional application of comminution processes.