The development of new routes or materials to realize superlubricity under high contact pressure can result in energysaving and reduction of emissions. In this study, superlubricity (μ = 0.0017) under extreme pressure (717 MPa, more than twice the previously reported liquid superlubricity) between the frictional pair of Si 3 N 4 /sapphire was achieved by prerunning-in with a H 3 PO 4 (HP) solution followed by lubrication with an aqueous solution consisting of poly(vinyl alcohol) (PVA) and sodium chloride (NaCl). Under the same test condition, the aqueous PVA lubricant did not show superlubricity. Results of X-ray photoelectron spectroscopy and Raman spectroscopy indicate the formation of a PVA-adsorbed film at the frictional interface after lubrication with PVA but not after lubrication with PVA/NaCl, indicating competitive adsorption between hydrated Na + ions and PVA molecules. The hydrated Na + ions adsorbed preferentially to the solid surfaces, causing the transformation of the shear interface from a polymer film/polymer film to a solid/polymer film. Meanwhile, the hydrated Na + ions also produced hydration repulsion force and induced low shear stress between the solid surfaces. Furthermore, NaCl increased the viscosity of the polymer lubricant, enhanced the hydrodynamic effect between interfaces, and decreased direct contact between the friction pair, causing a further reduction in friction. Thus, the superlubricity of the PVA/NaCl mixture is attributed to the combination of hydration and hydrodynamic effects. This study provides a novel route and mechanism for achieving extreme-pressure superlubricity at the macroscale, through the synergistic lubricating effect of hydrated ions and a polymer solution, propelling the industrial application of superlubricity.