С использованием дополнительных граничных условий в интегральном методе теплового баланса получено высокой точности приближенное аналитическое решение задачи теплообмена для жидкости, движущейся в плоскопараллельном канале при симметричных граничных условиях первого рода. Ввиду бесконечной скорости распространения теплоты, описываемой параболическим уравнением теплообмена, температура в центре канала изменяется тотчас же после приложения граничного условия первого рода.
Путeм представления этой температуры в виде дополнительной искомой функции, а также использования дополнительных граничных условий, определяемых так, чтобы искомое решение удовлетворяло исходному дифференциальному уравнению в граничных точках, находится приближенное аналитическое решение краевой задачи. Использование интеграла теплового баланса позволяет свести решение дифференциального уравнения в частных производных к интегрированию обыкновенного дифференциального уравнения относительно дополнительной искомой функции, изменяющейся лишь по продольной переменной. Показано, что выполнение исходного уравнения лишь на границах области с увеличением числа приближений приводит к его выполнению и внутри области. Отсутствие необходимости интегрирования дифференциального уравнения по поперечной пространственной переменной, ограничиваясь лишь выполнением интеграла теплового баланса (осредненного исходного дифференциального уравнения), позволяет применять данный метод к краевым задачам, решения которых не могут быть получены с помощью классических аналитических методов.