We are continuing development of the growth of midwave infrared (MWIR) HgCdTe by molecular-beam epitaxy (MBE) on 4-in. Si substrates and the fabrication of state-of-the-art detectors and focal plane arrays (FPAs). Array formats of up to 2048 × 2048 and unit cells as small as 20 m have been made. We regularly measure response operability values in excess of 99% on these arrays. These values typically exceed expectations, with the number of outages corresponding to as-grown defect densities four times lower than what we measure. We have investigated this operability discrepancy and now can account for it. Comparisons of measured properties were used to establish trends between defect occurrence and pixel operability. These correlations show that a combination of defect removal and low-impact defects provide the explanation. Having this knowledge will allow for better operability predictions and assist in efforts to reduce defect impact on FPA performance.
The heteroepitaxial growth of HgCdTe on large-area Si substrates is an enabling technology leading to the production of low-cost, large-format infrared focal plane arrays (FPAs). This approach will allow HgCdTe FPA technology to be scaled beyond the limitations of bulk CdZnTe substrates. We have already achieved excellent mid-wavelength infrared (MWIR) and short wavelength infrared (SWIR) detector and FPA results using HgCdTe grown on 4-in. Si substrates using molecular beam epitaxy (MBE), and this work was focused on extending these results into the long wavelength infrared (LWIR) spectral regime. A series of nine p-on-n LWIR HgCdTe double-layer heterojunction (DLHJ) detector structures were grown on 4-in. Si substrates. The HgCdTe composition uniformity was very good over the entire 4-in. wafer with a typical maximum nonuniformity of 2.2% at the very edge of the wafer; run-to-run composition reproducibility, realized with real-time feedback control using spectroscopic ellipsometry, was also very good. Both secondary ion mass spectrometry (SIMS) and Hall-effect measurements showed well-behaved doping and majority carrier properties, respectively. Preliminary detector results were promising for this initial work and good broad-band spectral response was demonstrated; 61% quantum efficiency was measured, which is very good compared to a maximum allowed value of 70% for a non-antireflection-coated Si surface. The R 0 A products for HgCdTe/Si detectors in the 9.6-µm and 12-µm cutoff range were at least one order of magnitude below typical results for detectors fabricated on bulk CdZnTe substrates. This lower performance was attributed to an elevated dislocation density, which is in the mid-10 6 cm Ϫ2 range. The dislocation density in HgCdTe/Si needs to be reduced to Ͻ10 6 cm Ϫ2 to make high-performance LWIR detectors, and multiple approaches are being tried across the infrared community to achieve this result because the technological payoff is significant.
We have been actively pursuing the development of long-wavelength infrared (LWIR) HgCdTe grown by molecular beam epitaxy (MBE) on large-area silicon substrates. The current effort is focused on extending HgCdTe/Si technology to longer wavelengths and lower temperatures. The use of Si versus bulk CdZnTe substrates is being pursued due to the inherent advantages of Si, which include available wafer sizes (as large as 300 mm), lower cost (both for the substrates and number of die per wafer), compatibility with semiconductor processing equipment, and the match of the coefficient of thermal expansion with silicon read-out integrated circuit (ROIC). Raytheon has already demonstrated low-defect, high-quality MBE-grown HgCdTe/Si as large as 150 mm in diameter. The focal plane arrays (FPAs) presented in this paper were grown on 100 mm diameter (211)Si substrates in a Riber Epineat system. The basic device structure is an MBE-grown p-on-n heterojunction device. Growth begins with a CdTe/ZnTe buffer layer followed by the HgCdTe active device layers; the entire growth process is performed in situ to maintain clean interfaces between the various layers. In this experiment the cutoff wavelengths were varied from 10.0 lm to 10.7 lm at 78 K. Detectors with >50% quantum efficiency and R 0 A~1000 Ohms cm 2 were obtained, with 256 · 256, 30 lm focal plane arrays from these detectors demonstrating response operabilities >99%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.