This article discusses the work of an intelligent anti-lock braking system (ABS), in which electric machines and friction brakes act as actuators. Combining several actuators at one control object is a difficult task. One of the possible ways to solve it is the use of a control system based on fuzzy logic. The paper compares two tracking algorithms for controlling the actuators of the anti-lock braking system: - slipping control using mixed braking, with a control system based on fuzzy logic; - slipping control by means of braking by one actuator - friction brakes. Research results have shown that the use of mixed braking allows one to increase the performance of this system in various driving conditions.
Introduction (statement of the problem and relevance). In accordance to the current standards the requirements were assessed: for the braking process efficiency of M1vehicles category using an antilock braking system (ABS) and the combined possibility control of two actuators - electric machines installed in the vehicle driving wheels as well as the electro-hydraulic modulation pressure unit in the hydraulic circuit of the working brake cylinders.The purpose of the study was to evaluate the effectiveness of the newly developed ABS algorithm in accordance with current standards and additional requirements.Methodology and research methods. The braking process computer simulation of a M1 vehicle category equipped with four electric motors and an electro-hydraulic braking system was carried out. As a result of calculations, the obtained braking parameters were to be compared and evaluate according to the requirements of UN Regulation No. 13H, as well as evaluate the braking efficiency parameters.Scientific novelty and results. The effectiveness of the developed control algorithm for the ABS actuators (electro-hydraulic unit and electric machines in the drive wheels) has been proven in terms of meeting the requirements of UN Regulation No. 13H. Studies showed an efficiency improvement of the ABS operating due to the proposed algorithm, when compared to foreign-produced analogues.The practical significance of the work is the proof of the developed algorithm efficiency for M1 electric vehicles category.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.