A method for painting a chromosome or chromosome region by fluorescence in situ hybridization (FISH) without blocking DNA is described. Both unique sequence and repetitive sequence components of a fluorescently labeled probe are hybridized under low-stringency conditions, but the chromosomes are washed in such a manner that repetitive sequences are differentially removed, while region-specific unique sequence fragments remain bound to the target chromosomes. We refer to this differential retention and removal of probe components as differential stability FISH.
We have identified 149 hybridization probes at 10-cM intervals in the mouse and have confirmed their order and linkage by fluorescence in situ hybridization. These probes represent a new resource for mapping in the mouse and can be used to correlate linkage and cytogenetic maps, to map novel sequences to within a few centimorgans, to relate cytogenetic abnormalities to the genetic map, and to make cross-species comparisons.
We have developed a method, which we have named hybridization-banding, to identify simultaneously all chromosomes in a mouse metaphase spread. The method uses a combination of hybridization probes labeled with a single fluor to yield a simple, unique, readily identifiable hybridization pattern on each chromosome. The method is superior to Giemsa- or fluorescence-based banding methods for chromosome identification because the hybridization patterns are simpler and easier to identify, and unique patterns can be designed at will for each chromosome. Analysis can be performed with a standard fluorescence microscope, and images can be recorded on film with an ordinary 35-mm camera, making the method useful to many investigators. The method can also be applied to any species for which chromosomes and probes can be prepared.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.