Snow microorganisms play a significant role in climate change and affecting the snow melting rate in the Arctic and Antarctic regions. While research on algae inhabiting green and red snow has been performed extensively, bacteria dwelling in this biotope have been studied to a much lesser extent. In this study, we performed 16S rRNA gene amplicon sequencing of two green snow samples collected from the coastal area of the eastern part of Antarctica and conducted genotypic and phenotypic profiling of 45 fast‐growing bacteria isolated from these samples. 16S rRNA gene amplicon sequencing of two green snow samples showed that bacteria inhabiting these samples are mostly represented by families Burkholderiaceae (46.31%), Flavobacteriaceae (22.98%), and Pseudomonadaceae (17.66%). Identification of 45 fast‐growing bacteria isolated from green snow was performed using 16S rRNA gene sequencing. We demonstrated that they belong to the phyla Actinobacteria and Proteobacteria, and are represented by the genera Arthrobacter, Cryobacterium, Leifsonia, Salinibacterium, Paeniglutamicibacter, Rhodococcus, Polaromonas, Pseudomonas, and Psychrobacter. Nearly all bacterial isolates exhibited various growth temperatures from 4°C to 25°C, and some isolates were characterized by a high level of enzymatic activity. Phenotyping using Fourier transform infrared (FTIR) spectroscopy revealed a possible accumulation of intracellular polymer polyhydroxyalkanoates (PHA) or lipids in some isolates. The bacteria showed different lipids/PHA and protein profiles. It was shown that lipid/PHA and protein spectral regions are the most discriminative for differentiating the isolates.
Fire blight, caused by plant pathogenic bacterium Erwinia amylovora, is one of the most important diseases of Rosaceae plants. Due to the lack of effective control measures, fire blight infections pose a recurrent threat on agricultural production worldwide. Recently, bacterial viruses, or bacteriophages, have been proposed as environmentally friendly natural antimicrobial agents for fire blight control. Here, we isolated a novel bacteriophage Hena1 with activity against E. amylovora. Further analysis revealed that Hena1 is a narrow-host-range lytic phage belonging to Myoviridae family. Its genome consists of a linear 148,842 bp dsDNA (48.42% GC content) encoding 240 ORFs and 23 tRNA genes. Based on virion structure and genomic composition, Hena1 was classified as a new species of bacteriophage subfamily Vequintavirinae. The comprehensive analysis of Hena1 genome may provide further insights into evolution of bacteriophages infecting plant pathogenic bacteria.
Rhodococcus erythropolis X5 is a psychrotrophic (cold-adapted) hydrocarbon-degrading bacterium, as it showed effective n-alkane destruction at low positive temperatures. Here, the genome of strain X5 was completely sequenced; it consists of a 6,472,161-bp circular chromosome (62.25% GC content) and a 526,979-bp linear plasmid, pRhX5-526k (62.37% GC content).
The strain Pseudomonas putida BS3701 was isolated from soil contaminated with coke by-product waste (Moscow Region, Russian Federation). It is capable of degrading crude oil and polycyclic aromatic hydrocarbons (PAHs). The P. putida BS3701 genome consists of a 6,337,358-bp circular chromosome and two circular plasmids (pBS1141 with 107,388 bp and pBS1142 with 54,501 bp).
Priestia megaterium BIM В‑1314D is a halotolerant strain able to adapt to osmotic stress. The analysis of a full nucleotide sequence of bacterium P. megaterium BIM В‑1314D has revealed that the genome of the studied strain is represented by one circular chromosome and nine plasmids, deposited in the database of GenBank NCBI under the registration number CP058262–CP058271. The size of the bacterial genome constitutes 5 984 922 base pairs with an average GC content of 37.7 %. The genome contains 6 187 genes where 5 978 were annotated as protein-enconding, 92 – as pseudogenes, 154 – as tRNA genes, 8 – as ncRNA, 47 – as rRNA. The genes responsible for synthesis and transport of betaine and proline osmolytes and transport of potassium ions ensuring the adaptation of strain P. megaterium BIM В‑1314D to osmotic stress were local-ized in the genome. Gene loci were defined encoding production of metabolites involved in the synthesis of phytohormones and polyamines accounting for the growth-promoting microbial ability. Gene clusters determining the synthesis of secondary metabolites, cold and heat shock proteins were revealed in the genome. The genome analysis of strain P. megaterium BIM В‑1314D provides the valuable data on the bacterial culture for stimulation of the plant growth in the salinized conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.