General trends in integrated circuit technology toward smaller device dimensions, lower thermal budgets, and simplified processing steps present severe physical and engineering challenges to ion implantation. These challenges, together with the need for physically based models at exceedingly small dimensions, are leading to a new level of understanding of fundamental defect science in Si. In this article, we review the current status and future trends in ion implantation of Si at low and high energies with particular emphasis on areas where recent advances have been made and where further understanding is needed. Particularly interesting are the emerging approaches to defect and dopant distribution modeling, transient enhanced diffusion, high energy implantation and defect accumulation, and metal impurity gettering. Developments in the use of ion beams for analysis indicate much progress has been made in one-dimensional analysis, but that severe challenges for two-dimensional characterization remain. The breadth of ion beams in the semiconductor industry is illustrated by the successful use of focused beams for machining and repair, and the development of ion-based lithographic systems. This suite of ion beam processing, modeling, and analysis techniques will be explored both from the perspective of the emerging science issues and from the technological challenges.
The role of silicon hydride species in the photoluminescence intensity behavior of porous Si has been studied. The surfaces of luminescent porous Si samples were converted to a predominate SiH termination using a remote H plasma. The as-passivated samples were then immersed in various concentrations of hydrofluouric solutions to regulate the recovery of SiH2 termination on the surface. Photoluminescence measurements and transmission Fourier-transform infrared spectroscopy have shown that predominant silicon monohydride (SiH) termination results in weak photoluminescence. In contrast, it has been observed that the appearance of silicon dihydride (SiH2) coincides with an increase in the photoluminescence intensity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.