This work presents the performance of a sequencing batch reactor (SBR) system used as a means of removing nitrogen from domestic wastewater containing a low chemical oxygen demand (COD) to nitrogen ratio due to pre-treatment with an anaerobic reactor. The aim of the work was to determine the feasibility of this system for the removal of nitrogen from the domestic wastewater. An SBR with a working volume of 5 L was investigated at different cycle times of 12, 8 and 6 h, at 18 °C. The efficiency of the SBR varied together with the duration of the cycle, where the optimum performance was seen in the 6 h cycle with the anoxic-aerobic-anoxic sequence. Due to the low quantity of organic matter present in the domestic wastewater after the anaerobic treatment, an additional supply of external carbon was necessary before the second anoxic stage. The removal efficiencies obtained were: 98% for total Kjeldahl nitrogen, 84% for total nitrogen and 77% for soluble COD. The reactor was thus shown to be viable, and it was concluded that this process may be successfully applied as a post-treatment for the removal of nitrogen from anaerobically treated domestic wastewater.
Ultrasonic irradiation is one of the most promising membrane cleaning techniques for membrane bioreactors (MBRs) because of several advantages such as high flux-recovery capacity and in situ application without interrupting the filtration process. However, significant contradictions may be found and, consequently, this method has not yet been widely developed. In this paper, four MBRs equipped with hollow-fibre polyvinylidene fluoride ultrafiltration membranes were operated continuously. The cleaning method applied consisted of sonication at low power (15 W) with different frequencies (20, 25, 30, and 40 kHz) for each module and aerated backwashing. The different MBRs were analysed comparatively between them and with a conventional MBR in order to check the effects of the irradiated waves on membrane integrity, effluent quality and process performance. Effluent turbidity and chemical oxygen demand, total and volatile suspended solid concentration and activated sludge viscosity were affected by biomass fragmentation or membrane cake removal, mainly at lower frequencies. The best transmembrane pressure control was achieved at the frequency of 20 kHz without a significant effect on membrane integrity. The results showed that under these operational conditions, no negative effects on effluent quality or membrane integrity were found, suggesting that this method was suitable for this type of membrane.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.