Various techniques are employed to determine the amounts, retention, and distribution of radioactivity in human subjects in vivo. The principal method is gamma-ray spectrometry with large NaI(Tl) scintillation crystals ("whole-body counting"). The geometries used include an arc of 1.5-m radius in which all parts of the body are roughly equidistant from the detector, a reclining chair and a flat bed with detectors placed above and below the subject. When a sufficient amount of radioactivity is present in a subject, scanning techniques assist in determining its distribution in the body. Specialized instruments such as a xenon-filled proportional counter and a dual-crystal (phoswich) detector are used to measure low-energy photon emitters, primarily plutonium and americium. americium. There are three primary methods of calibrating the detectors. The first is analytical, in which a rigorous mathematical treatment is employed; the second involves the administration of tracer amounts of radioactivity to human volunteers; the third consists of determining detector response to known amounts of radioactivity in a phantom. All three methods can be intercompared, and further evaluated by comparing the results of measurements in vivo with those of postmortem analyses. For both radium and thorium cases measured in vivo, the interpretation of the results is complicated by the fact that neither radium nor thorium emit gamma rays of any consequence. Instead, the observed gamma rays result from the decay of 214Bi (RaC) and 208Tl (ThC"), respectively. Since each of these nuclides is preceded in the decay chain by an isotope of the noble gas radon, some of which is exhaled, its activity is not equal to that of the parent radium or thorium. Therefore, breath samples are collected to determine the exhalation rate of the precursor isotope, 222Rn (radon) or 220Rn (thoron). The total body content is then the sum of the gamma activity and the exhaled radioactivity, referred to as the retained and emanating fractions, respectively.
Uranium and thorium daughters are ten times more concentrated in thyroids from some bovine animals than in the teeth of the same animals. These radioactive isotopes are believed to be from natural sources, but their resulting annual dosage of thyroid radiation has exceeded that from iodine-131 fallout.
This study examined the effect of internal exposure to alpha-particle radiation on subsequent fertility among women employed in the radium dial industry prior to 1930, when appreciable amounts of radium were often ingested through the practice of pointing the paint brush with the lips. The analysis was limited to women for whom a radium body burden measurement had been obtained and who were married prior to age 45 (n = 603). Internal radiation dose to the ovary was calculated based on initial intakes of radium-226 and radium-228, average ovarian mass, number and energy of alpha particles emitted, fraction of energy absorbed within the ovary, effective retention integrals and estimated photon irradiation. Time between marriage and pregnancy, number of pregnancies and number of live births served as surrogates for fertility. Radiation appeared to have no effect on fertility at estimated cumulative ovarian dose equivalents below 5 Sv; above this dose, however, statistically significant declines in both number of pregnancies and live births were observed. These trends persisted after multivariable adjustment for potential confounding variables and after exclusion of subjects contributing a potential classification or selection bias to the study. Additionally, the high-dose group experienced fewer live births than would have been expected based on population rates. There were no differences in time to first pregnancy between high- and low-dose groups. These results are consistent with earlier studies of gamma-ray exposures and suggest that exposure to high doses of radiation from internally deposited radium reduces fertility rather than inducing sterility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.