GaN high electron mobility transistors (HEMTs) were monolithically integrated with silicon CMOS to create a functional current mirror circuit. The integrated circuit was fabricated on 100 mm diameter modified silicon-on-insulator (SOI) wafers incorporating a resistive (111) silicon handle substrate and a lightly doped (100) silicon device layer. In a CMOS-first process, the CMOS was fabricated using the (100) device layer. Subsequently GaN was grown by plasma molecular beam epitaxy in windows on the (111) handle substrate surface without wire growth despite using gallium-rich growth conditions. Transmission lines fabricated on the GaN buffer/SOI wafer exhibited a microwave loss of less than 0.2 dB/mm up to 35 GHz. Direct current measurements on GaN HEMTs yielded a current density of 1.0 A/mm and transconductance of 270 mS/mm. At 10 GHz and a drain bias of 28 V, 1.25 mm long transistors demonstrated a small signal gain of 10.7 dB and a maximum power added efficiency of 53% with a concomitant power of 5.6 W. The silicon and GaN transistors were interconnected to form high yield test interconnect daisy chains and a monolithic current mirror circuit. The CMOS output drain current controlled the GaN transistor quiescent current and consequently the microwave gain.
Articles you may be interested inGrowth and characterization of AlGaN/GaN/AlGaN double-heterojunction high-electron-mobility transistors on 100-mm Si(111) using ammonia-molecular beam epitaxy Suppression of surface segregation of silicon dopants during molecular beam epitaxy of ( 411 ) A In 0.75 Ga 0.25 As ∕ In 0.52 Al 0.48 As pseudomorphic high electron mobility transistor structures High mobility AlGaN/GaN heterostructures grown by plasma-assisted molecular beam epitaxy on semi-insulating GaN templates prepared by hydride vapor phase epitaxy
GaN high electron mobility transistor (HEMT) structures have been grown by plasma molecular beam epitaxy on 100 mm diameter ⟨111⟩ silicon substrates. Crack-free films with thicknesses of up to 1.7 μm were deposited without the use of strain-relaxing buffer layers. X-ray measurements indicate high structural uniformity and the Pendellosung oscillations are observed due to the abruptness of the AlGaN/GaN interface. Capacitance-voltage measurements display a sharp pinch-off with a depleted GaN buffer layer and no measurable charge accumulation at the substrate-epi interface. Transmission line measurements on the GaN HEMT buffer and substrate indicate a loss of less than 0.2 dB/mm up to 20 GHz. An average sheet resistance of 443 Ω/sq with a standard deviation of 0.8% and a mobility of 1600 cm2/V s were obtained for an Al0.25Ga0.75N/GaN HEMT. Transistors were fabricated with a current density of 1.2 A/mm and a transconductance of 290 mS/mm which is quite comparable to GaN HEMTs on SiC.
Single and double pulse doped metamorphic high electron mobility transistor (MHEMT) structures have been grown on GaAs substrates by molecular beam epitaxy. A linear indium graded buffer layer was used to expand the lattice constant. Transmission electron microscopy cross sections showed planar interfaces. Threading dislocations were not observed along both cleavage directions. For a single pulse doped MHEMT structure with an In0.56Ga0.44As channel layer, the mobilities (10 030 cm2/V s at 292 K; 32 560 cm2/V s at 77 K) and sheet density (3.2×1012 cm−2) were nearly equivalent to values obtained for the same structure grown on an InP substrate. Secondary ion mass spectroscopy measurements of a double pulse doped structure indicated no measurable migration of the silicon doping pulses. MHEMT devices with 0.15 μm gates were fabricated, tested, and compared to GaAs pseudomorphic HEMT devices of the same geometries. Above 9 GHz, the MHEMT devices exhibited lower noise figure. From 3 to 26 GHz, the associated gain was 3 dB higher with the MHEMT devices. Also higher linearity performance was obtained with the MHEMT devices. At 4 GHz MHEMT linearity measurements yielded third order intermodulation distortion intercepts, IP3, of 36–39 dBm with linearity figure of merits of 60–90. Due to the significantly lower cost and more robustness of GaAs substrates compared to InP substrates, MHEMT technology is very promising for low cost manufacturing of low noise amplifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.