A metamorphic Ga0.35In0.65P/Ga0.83In0.17As/Ge triple-junction solar cell is shown to provide current-matching of all three subcells and thus composes a device structure with virtually ideal band gap combination. We demonstrate that the key for the realization of this device is the improvement of material quality of the lattice-mismatched layers as well as the development of a highly relaxed Ga1-yInyAs buffer structure between the Ge substrate and the middle cell. This allows the metamorphic growth with low dislocation densities below 10(6) cm(-2). The performance of the approach has been demonstrated by a conversion efficiency of 41.1% at 454 suns (454 kW/m(2), AM1.5d ASTM G173-03)
Triple-junction solar cells from III-V compound semiconductors have thus far delivered the highest solar-electric conversion efficiencies. Increasing the number of junctions generally offers the potential to reach even higher efficiencies, but material quality and the choice of bandgap energies turn out to be even more importance than the number of junctions. Several four-junction solar cell architectures with optimum bandgap combination are found for lattice-mismatched III-V semiconductors as high bandgap materials predominantly possess smaller lattice constant than low bandgap materials. Direct wafer bonding offers a new opportunity to combine such mismatched materials through a permanent, electrically conductive and optically transparent interface. In this work, a GaAs-based top tandem solar cell structure was bonded to an InP-based bottom tandem cell with a difference in lattice constant of 3.7%. The result is a GaInP/GaAs//GaInAsP/GaInAs four-junction solar cell with a new record efficiency of 44.7% at 297-times concentration of the AM1.5d (ASTM G173-03) spectrum. This work demonstrates a successful pathway for reaching highest conversion efficiencies with III-V multi-junction solar cells having four and in the future even more junctions.
Two different process technologies were investigated for the fabrication of high-efficiency GaInP/GaAs dual-junction solar cells on silicon: direct epitaxial growth and layer transfer combined with semiconductor wafer bonding. The intention of this research is to combine the advantages of high efficiencies in III-V tandem solar cells with the low cost of silicon. Direct epitaxial growth of a GaInP/GaAs dual-junction solar cell on a GaAs y P 1 −y buffer on silicon yielded a 1-sun efficiency of 16.4% (AM1.5g). Threading dislocations that result from the 4% lattice grading are still the main limitation to the device performance. In contrast, similar devices fabricated by semiconductor wafer bonding on n-type inactive Si reached efficiencies of 26.0% (AM1.5g) for a 4-cm 2 solar cell device.
Highly efficient III-V/Si triple-junction solar cells were realized by a fabrication process based on direct wafer bonding: Ga 0 .51 In 0 .49 P/GaAs dual-junction solar cells were grown inverted by metal organic vapor phase epitaxy on GaAs substrates and bonded to separately fabricated Si solar cells. The fast atom beam activated direct wafer bond between highly doped n-Si and n-GaAs enabled a transparent and electrically conductive interface. Challenges arising from the different thermal expansion coefficients of Si and the III-V semiconductors were circumvented, as the bonding was performed at moderate temperatures of 120 °C. The external quantum efficiency and current-voltage characteristics of the wafer-bonded triple-junction solar cells were thoroughly investigated, and a maximum efficiency of 30.0% was found for a concentration factor of 112.
Optically transparent, electrically conductive n-Si/n-GaAs direct wafer bonds are achieved by athorough optimization of surface conditioning using fast atom beams. Bonding at room temperature under high-vacuum conditions is systematically investigated after in situ surface deoxidization using either argon or helium fast atom beams. Using argon, high bond energies of up to 900 mJ/m2 areobtained and further enhanced to achieve bulk strength through rapid annealing at 290 C, thereby enabling the production of thermally stable and mechanically robust hybrid substrates. Moreover, the interface conductivity is significantly improved by an additional thermal annealing at 400 C. Although it is anticipated to induce higher quality interfaces, helium treatment yields, however, limited and unstable bonding. This difference is attributed to an important surface nano-texturing that occurs during fast atom beam processing, a phenomenon that is peculiar to helium and absent in argon treatment
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.