ZnO and Ag nanoparticle have known their antibacterial activity especially their use in medical materials. In this study, ZnO-Ag Nanocomposite was synthesized by ultrasonication-microwave combination method with variation of reaction time using clove oil as their bioreductor. ZnO-Ag was prepared from ZnO Acetate as a source of ZnO and AgNO3 as a source of Ag. The crystallinity structure, average particle size, morphology, and composition of ZnO-Ag was characterized by X-Ray Diffraction, Scanning Electron Microscope, and Energy Dispersive X-ray Spectroscopy. X-ray diffraction pattern indicates that reaction time of 30 minutes have optimal synthesis results. The nanocomposite obtained consists of 43.2 % Ag nanoparticle, 17.5 % hexagonal Zincite, 14.6% Zinc Oxide, 14.5% wulfingite (deuterated), and 10.2% Zn(OH)2 with average particle size of 28.29 nm according to Scherer’s equation. The result of scanning electron microscope showed that ZnO has an fiber shape and Ag has a round shape.
Antibacterials have been used to treat infectious diseases in both humans and animals since 1929. Along with their use, there is resistance to some antibacterials. 43% of Escherichia coli is resistant to various types of antibiotics. Therefore, research on the development of antibacterial ingredients is always being developed. Nanocellulose has received a lot of attention on its application of antibacterial material support. Meanwhile, chitosan is an antibacterial biopolymer with a brittle structure, hence nanocellulose is added to chitosan film to increase its structural stability. In this study, nanocellulose was extracted from sugarcane bagasse through a combination method of sulfuric acid hydrolysis with ultrasonic waves. The effect of addition of nanocellulose to chitosan mechanical properties was investigated. Scanning Electron Microscopy (SEM) characterization showed that there were differences in morphology between nanocellulose, chitosan, and nanocellulose-chitosan biocomposites. The result of X-Ray Diffraction and Fourier-transformed infrared spectroscopy analysis showed that biocomposites was successfully formed. The average size of nanocellulose particle was 132.67 nm. Nanocellulose-chitosan biocomposites with a ratio of 10:2 have the best antibacterial activity against Escherichia coli than other biocomposite ratios.
Pseudomonas aeruginosa is a Gram-negative bacterium that often causes nosocomial infection because of its ability to produce biofilms so that it is resistant to various antibiotics. This research aims to determine the activity of zinc oxide-silver nanocomposites (ZnO-Ag) with clove oil against P. aerugoinosa bacteria. ZnO-Ag nanocomposites were made using the Green One Pot Synthesis technique using a sonicator and microwave instruments. The nanocomposites formed were characterized by X-Ray Diffraction (XRD) to determine crystallinity and particle size and Scanning Electron Microscopy-Energy Dispersive X-Ray (SEM-EDX) to determine morphology and elements. The antibacterial activity and antibiofilm tests were carried out using the well diffusion and the microplate techniques, respectively. The resulted ZnO-Ag nanocomposite formed had a size of 19.66 nm, where Ag (47%) was of round shape, while Zn (35%) and O (18%) were fibrous. The ZnO-Ag had an inhibition zone of 14.9 mm against P. aeruginosa and was able to prevent the attachment of the bacterial biofilm for 48 hours with 76,59% inhibition percentage.
Pseudomonas aeruginosa merupakan bakteri Gram negatif yang sering menyebabkan infeksi noskomial karena kemampuannya menghasilkan biofilm sehingga resisten terhadap berbagai antibiotik. Penelitian ini bertujuan untuk mengetahui aktivitas nanokomposit seng oksida-perak (ZnO-Ag) dengan minyak cengkeh terhadap P. aeruginosa. Nanokomposit ZnO-Ag dibuat dengan teknik Green One Pot Synthesis menggunakan instrumen sonikator dan gelombang mikro. Nanokomposit yang terbentuk dikarakterisasi menggunakan X-Ray Diffraction (XRD) untuk mengetahui kristalinitas dan ukuran partikel, Scanning Electron Microscopy-Energy Dispersive X-Ray (SEM-EDX) untuk mengetahui morfologi dan unsur yang terbentuk. Uji aktivitas antibakteri dilakukan dengan metode difusi sumuran dan uji antibiofilm dilakukan dengan teknik microplate. Hasil nanokomposit ZnO-Ag yang terbentuk memiliki ukuran sebesar 19,66 nm, dimana Ag (47%) berbentuk bulat sedangkan Zn (35%) dan O (18%) berbentuk fiber. Nanokomposit ZnO-Ag memunculkan zona hambat 14,9 mm terhadap P. aeruginosa dan mampu mencegah penempelan biofilm yang dihasilkan bakteri tersebut selama 48 jam dengan penghambatan 76,59%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.