Aims. We aim at deriving the molecular abundances and temperatures of the hot molecular cores in the high-mass star-forming region NGC 6334I and consequently deriving their physical and astrochemical conditions. Methods. In the framework of the Herschel guaranteed time key program CHESS (Chemical HErschel Surveys of Star forming regions), NGC 6334I is investigated by using the Heterodyne Instrument for the Far-Infrared (HIFI) aboard the Herschel Space Observatory. A spectral line survey is carried out in the frequency range 480-1907 GHz, and further auxiliary interferometric data from the Submillimeter Array (SMA) in the 230 GHz band provide spatial information for disentangling the different physical components contributing to the HIFI spectrum. The spectral lines in the processed Herschel data are identified with the aid of former surveys and spectral line catalogs. The observed spectrum is then compared to a simulated synthetic spectrum, assuming local thermal equilibrium, and best fit parameters are derived using a model optimization package. Results. A total of 46 molecules are identified, with 31 isotopologues, resulting in about 4300 emission and absorption lines. Highenergy levels (E u > 1000 K) of the dominant emitter methanol and vibrationally excited HCN (ν 2 = 1) are detected. The number of unidentified lines remains low with 75, or <2% of the lines detected. The modeling suggests that several spectral features need two or more components to be fitted properly. Other components could be assigned to cold foreground clouds or to outflows, most visible in the SiO and H 2 O emission. A chemical variation between the two embedded hot cores is found, with more N-bearing molecules identified in SMA1 and O-bearing molecules in SMA2. Conclusions. Spectral line surveys give powerful insights into the study of the interstellar medium. Different molecules trace different physical conditions like the inner hot core, the envelope, the outflows or the cold foreground clouds. The derived molecular abundances provide further constraints for astrochemical models.
We discuss mm-wavelength radio, 2.2-11.8 μm NIR and 2-10 keV X-ray light curves of the super massive black hole (SMBH) counterpart of Sagittarius A* (SgrA*) near its lowest and highest observed luminosity states. We investigate the structure and brightness of the central S-star cluster harboring the SMBH to obtain reliable flux density estimates of SgrA* during its low luminosity phases. We then discuss the physical processes responsible for the brightest flare as well as the faintest flare or quiescent emission in the NIR and X-ray domain. To investigate the low state of SgrA* we use three independent methods to remove or strongly suppress the flux density contributions of stars in the central 2 diameter region around SgrA*. The three methods are: a) low-pass filtering the image; b) iterative identification and removal of individual stars; c) automatic point spread function (PSF) subtraction. For the lowest observed flux density state all 3 image reduction methods result in the detection of faint extended emission with a diameter of 0.5 -1.0 and centered on the position of SgrA*. We analyzed two datasets that cover the lowest luminosity states of SgrA* we observed to date. In one case we detect a faint K-band (2.2 μm) source of ∼4 mJy brightness (de-reddened with A K = 2.8) which we identify as SgrA* in its low state. In the other case no source brighter or equal to a de-reddened K-band flux density of ∼2 mJy was detected at that position. As physical emission mechanisms for SgrA* we discuss bremsstrahlung, thermal emission of a hypothetical optically thick disk, synchrotron and synchrotron self-Compton (SSC) emission, and in the case of a bright flare the associated radio response due to adiabatic expansion of the synchrotron radiation emitting source component. The luminosity during the low state can be interpreted as synchrotron emission from a continuous or even spotted accretion disk. For the high luminosity state SSC emission from THz peaked source components can fully account for the flux density variations observed in the NIR and X-ray domain. We conclude that at near-infrared wavelengths the SSC mechanism is responsible for all emission from the lowest to the brightest flare from SgrA*. For the bright flare event of 4 April 2007 that was covered from the radio to the X-ray domain, the SSC model combined with adiabatic expansion can explain the related peak luminosities and different widths of the flare profiles obtained in the NIR and X-ray regime as well as the non detection in the radio domain.
Aims. Star formation involves the collapse of gas from the scale of giant molecular clouds down to dense cores. Our aim is to trace the velocities in the filamentary, massive star-forming region NGC 6334 and to explain its dynamics. Methods. The main filament was mapped with the single-dish telescope APEX in HCO + (J = 3-2) at 267.6 GHz to trace the dense gas. In order to reproduce the position−velocity diagram, we use a 3D radiative transfer code and create a model of a cylinder that undergoes a gravitational collapse toward its center. Results. We find a velocity gradient in the filament from the end toward its center, with the highest masses being found at both ends. Similar velocities have been predicted by recent calculations of the gravitational collapse of a sheet or cylinder of gas, and the observed velocities are consistent with these predictions. The 3D structure is revealed by taking the inclination and curvature of the filament into account. The free-fall collapse timescale of the filamentary molecular cloud is estimated to be ∼1 Myr.
Context. Hot molecular cores (HMCs) are intermediate stages of high-mass star formation and are also known for their rich chemical reservoirs and emission line spectra at (sub-)mm wavebands. Complex organic molecules (COMs) such as methanol (CH 3 OH), ethanol (C 2 H 5 OH), dimethyl ether (CH 3 OCH 3 ), and methyl formate (HCOOCH 3 ) produce most of these observed lines. The observed spectral feature of HMCs such as total number of emission lines and associated line intensities are also found to vary with evolutionary stages. Aims. We aim to investigate the spectral evolution of these COMs to explore the initial evolutionary stages of high-mass star formation including HMCs. Methods. We developed various 3D models for HMCs guided by the evolutionary scenarios proposed by recent empirical and modeling studies. We then investigated the spatio-temporal variation of temperature and molecular abundances in HMCs by consistently coupling gas-grain chemical evolution with radiative transfer calculations. We explored the effects of varying physical conditions on molecular abundances including density distribution and luminosity evolution of the central protostar(s) among other parameters. Finally, we simulated the synthetic spectra for these models at different evolutionary timescales to compare with observations. Results. Temperature has a profound effect on the formation of COMs through the depletion and diffusion on grain surface to desorption and further gas-phase processing. The time-dependent temperature structure of the hot core models provides a realistic framework for investigating the spatial variation of ice mantle evaporation as a function of evolutionary timescales. We find that a slightly higher value (15 K) than the canonical dark cloud temperature (10 K) provides a more productive environment for COM formation on grain surface. With increasing protostellar luminosity, the water ice evaporation font (∼100 K) expands and the spatial distribution of gas phase abundances of these COMs also spreads out. We calculated the temporal variation of the radial profiles of these COMs for different hot core models. These profiles resemble the so-called jump profiles with relative abundances higher than 10 −9 within the evaporation font will furthermore be useful to model the observed spectra of hot cores. We present the simulated spectra of these COMs for different hot core models at various evolutionary timescales. A qualitative comparison of the simulated and observed spectra suggests that these self-consistent hot core models can reproduce the notable trends in hot core spectral variation within the typical hot core timescales of 10 5 year. These models predict that the spatial distribution of various emission line maps will also expand with evolutionary time; this feature can be used to constrain the relative desorption energies of the molecules that mainly form on the grain surface and return to the gas phase via thermal desorption. The detailed modeling of the thermal structure of hot cores with similar ma...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.