Scarring of the kidney is a major public health concern, directly promoting loss of kidney function. In order to understand the role of microRNA (miRNA) in the progression of kidney scarring in response to injury, we investigated changes in miRNA expression in two kidney fibrosis models, and identified 24 commonly upregulated miRNAs. Among them, miR-21 was highly elevated in both animal models and human transplant kidney nephropathy. Deletion of miR-21 in mice resulted in no overt abnormality. However, miR-21-/- mice suffered far less interstitial fibrosis in response to kidney injury, which was pheno-copied in wild-type mice treated with anti-miR-21 oligonucleotides. Surprisingly, global de-repression of miR-21 target messenger RNAs was only readily detectable in miR-21-/- kidneys after injury. Analysis of gene expression profiles identified groups of genes involved in metabolic pathways that were up-regulated in the absence of miR-21, including the lipid metabolism pathway regulated by Peroxisome proliferator activated receptor-α (Pparα), a direct miR-21 target. Over-expression of Pparα prevented UUO-induced injury and fibrosis. Pparα deficiency abrogated the anti-fibrotic effect of anti-miR21 oligonucleotides. miR-21 also regulates the redox metabolic pathway. The mitochondrial inhibitor of reactive oxygen species generation, Mpv17l, was repressed by miR-21, correlating closely with enhanced oxidative kidney damage. These studies demonstrate that miR-21 contributes to fibrogenesis and epithelial injury in the kidney in two mouse models and is a candidate target for anti-fibrotic therapies.
Inter-observer reproducibility of transplant glomerulitis can be improved by using more stringent histologic criteria. Glomerular inflammation correlates with endothelial injury, monocyte influx, and IL-6 and IL-β secretion by circulating immune cells.
Identification of risk factors associated with increase resource utilization among kidney transplant recipients could aid in the development of targeted interventions to improve clinical and economic outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.