Nanosilver is one of the first nanomaterials to be closely monitored by regulatory agencies worldwide motivating research to better understand the relationship between Ag characteristics and antibacterial activity. Nanosilver immobilized on nanostructured silica facilitates such investigations as the SiO 2 support hinders the growth of nanosilver during its synthesis and, most importantly, its flocculation in bacterial suspensions. Here, such composite Ag/silica nanoparticles were made by flame spray pyrolysis of appropriate solutions of Ag-acetate or Ag-nitrate and hexamethyldisiloxane or tetraethylorthosilicate in ethanol, propanol, diethylene glucolmonobutyl ether, acetonitrile or ethylhexanoic acid. The effect of solution composition on nanosilver characteristics and antibacterial activity against the Gram negative Escherichia coli was investigated by monitoring their recombinantly synthesized green fluorescent protein. Suspensions with identical Ag mass concentration exhibited drastically different antibacterial activity pointing out that the nanosilver surface area concentration rather than its mass or molar or number concentration determine best its antibacterial activity. Nanosilver made from Ag-acetate showed a unimodal size distribution, while that made from inexpensive Ag-nitrate exhibited a bimodal one. Regardless of precursor composition or nanosilver size distribution, the antibacterial activity of nanosilver was correlated best with its surface area concentration in solution.
Bimetallic palladium-platinum nanoparticles supported on alumina were prepared by flame spray pyrolysis. The as-prepared materials were characterized by scanning transmission electron microscopy (STEM), CO chemisorption, nitrogen adsorption (BET), X-ray diffraction (XRD), temperature programmed reduction (TPR), thermogravimetric analysis (TGA) and extended X-ray absorption fine structure (EXAFS) spectroscopy. The materials were tested for the catalytic combustion of methane with a focus on the thermal stability of the noble metal particles. After flame synthesis the noble metal components of the materials were predominantly in oxidized state and finely dispersed on the alumina matrix. Reduction afforded small bimetallic Pd-Pt alloy particles (<5 nm) supported on Al 2 O 3 ceramic nanoparticles. The addition of small amounts of platinum made the palladium particles more resistant against sintering at high temperatures and further lowered the deactivation observed during methane combustion.
The formation of nanostructured silica particles by oxidation of hexamethyldisiloxane (HMDSO) in co-annular diffusion flames is investigated by in-situ small-angle X-ray scattering (SAXS). This enabled the nonintrusive monitoring of the mass fractal dimension, the aggregate size, and the number of primary particles per aggregate, along with the silica volume fraction, the primary particle diameter, the geometric standard deviation, and the number density along the flame axis. Parallel to this, thermophoretic sampling (TS) of the particles and analysis by transmission electron microscopy (TEM) allowed for direct comparison of particle morphology to that obtained from the above SAXS analysis, which were compared also to the ultra-small-angle X-ray scattering (US-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.