Cherry chlorotic rusty spot (CCRS) and Amasya cherry disease (ACD) display similar symptoms and are associated with a series of dsRNAs. However, a direct comparison has been lacking. Here, a side-by-side analysis confirmed that both diseases were symptomatologically very similar, as were the number (10-12) and size of their associated dsRNAs. Sequence determination of four of these dsRNAs revealed that they were essentially identical for CCRS and ACD. The largest (3399 bp), which potentially encoded a protein of 1087 aa with the eight motifs conserved in RNA-dependent RNA polymerases of dsRNA mycoviruses, had the highest similarity to those coded by dsRNA 1 of viruses belonging to the genus Chrysovirus and was termed CCRS or ACD chrys-dsRNA 1. The three closely migrating dsRNAs had the properties of the other components of a chrysovirus and in CCRS and ACD versions, respectively, were chrys-dsRNA 2 (3125 and 3128 bp), chrys-dsRNA 3 (2833 bp) and chrys-dsRNA 4 (2499 and 2498 bp), potentially encoding the major capsid protein (993 and 994 aa) and two proteins (884 and 677 aa, respectively) of unknown function. The four 59-and 39-UTRs shared internal similarities and had conserved GAAAAUUAUGG and AUAUGC termini, respectively. The 59-UTRs contained the 'Box 1' motif followed by a stretch rich in CAA, CAAA and CAAAA repeats, characteristic of chrysovirus dsRNAs. Because species of the genus Chrysovirus have only been described as infecting fungi, this suggests a fungal aetiology for CCRS and ACD, a proposal supported by the properties of two other CCRS-and ACD-associated dsRNAs (see accompanying paper by Coutts et al., 2004, in this issue).
The sequence of the four large (L) double-stranded RNAs (dsRNAs) associated with Amasya cherry disease (ACD), which has a presumed fungal aetiology, is reported. ACD L dsRNAs 1 (5121 bp) and 2 (5047 bp) potentially encode proteins of 1628 and 1620 aa, respectively, that are 37 % identical and of unknown function. ACD L dsRNAs 3 (4458 bp) and 4 (4303 bp) potentially encode proteins that are 68 % identical and contain the eight motifs conserved in RNA-dependent RNA polymerases (RdRp) of dsRNA mycoviruses, having highest similarity with those of members of the family Totiviridae. Both terminal regions share extensive conservation in all four RNAs, suggesting a functional relationship between them. As ACD L dsRNAs 1 and 2 do not encode RdRps, both are probably replicated by those from either ACD L dsRNA 3 or 4. Partial characterization of the equivalent L dsRNAs 3 and 4 associated with cherry chlorotic rusty spot revealed essentially identical sequences.
Short CommunicationCherry chlorotic rusty spot and Amasya cherry diseases are associated with a complex pattern of mycoviral-like double-stranded RNAs. II.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.