Gene flow is a key factor in the evolution of species, influencing effective population size, hybridisation and local adaptation. We analysed local gene flow in eight stands of white oak (mostly Quercus petraea and Q. robur, but also Q. pubescens and Q. faginea) distributed across Europe.Adult trees within a given area in each stand were exhaustively sampled (range [239, 754], mean 423), mapped, and acorns were collected ([17,147], 51) from several mother trees ([3], [47], 23). Seedlings ([65,387], 178) were harvested and geo-referenced in six of the eight stands. Genetic information was obtained from screening distinct molecular markers spread across the genome, genotyping each tree, acorn or seedling. All samples were thus genotyped at 5–8 nuclear microsatellite loci. Fathers/parents were assigned to acorns and seedlings using likelihood methods. Mating success of male and female parents, pollen and seed dispersal curves, and also hybridisation rates were estimated in each stand and compared on a continental scale.On average, the percentage of the wind-borne pollen from outside the stand was 60%, with large variation among stands (21–88%). Mean seed immigration into the stand was 40%, a high value for oaks that are generally considered to have limited seed dispersal. However, this estimate varied greatly among stands (20–66%). Gene flow was mostly intraspecific, with large variation, as some trees and stands showed particularly high rates of hybridisation.Our results show that mating success was unevenly distributed among trees. The high levels of gene flow suggest that geographically remote oak stands are unlikely to be genetically isolated, questioning the static definition of gene reserves and seed stands.
a b s t r a c tGenetic analysis was carried out in order to provide insights into differentiation among populations of two interfertile oak species, Quercus petraea and Quercus robur. Gene flow between the two species, local adaptation and speciation processes in general, may leave differential molecular signatures across the genome. Three interspecific pairs of natural populations from three ecologically different regions, one in central Europe (SW Germany) and two in the Balkan Peninsula (Greece and Bulgaria) were sampled. Grouping of highly informative SSR loci was made according to the component of variation they express-interspecific or provenance specific. 'Species' and 'provenance discriminant' loci were characterized based on F ST s. Locus specific F ST s were tested for deviation from the neutral expectation both within and between species. Data were then treated separately in a Bayesian analysis of genetic structure. By using three 'species discriminant' loci, high membership probability to inferred species groups was achieved. On the other hand, analysis of genetic structure based on five 'provenance discriminant' loci was correlated with geographic region and revealed shared genetic variation between neighbouring Q. petraea and Q. robur. Small sets of highly variable nuclear SSRs were sufficient to discriminate, either between species or between provenances. Thus, an effective tool is provided for molecular identification of both species and provenances. Furthermore, data suggest that a combination of gene flow and natural selection forms these diversity patterns. 'Species discriminant' loci might represent genome regions affected by directional selection, which maintains species identity. 'Provenance specific' loci might represent genome regions with high interspecific gene flow and common adaptive patterns to local environmental factors.
Interfertile oaks in an island environment: I. High nuclear genetic differentiation and high degree of chloroplast DNA sharing between Q. alnifolia and Q. coccifera in Cyprus.Abstract The evergreen Quercus alnifolia and Q. coccifera form the only interfertile pair of oak species growing in Cyprus. Hybridization between the two species has already been observed and studied morphologically. However, little evidence exists about the extent of genetic introgression. In the present study, we aimed to study the effects of introgressive hybridization mutually on both chloroplast and nuclear genomes. We sampled both pure and mixed populations of Q. alnifolia and Q. coccifera from several locations across their distribution area in Cyprus. We analyzed the genetic variation within and between species by conducting analysis of molecular variance (AMOVA) based on nuclear microsatellites. Population genetic structure and levels of admixture were studied by means of a Bayesian analysis (STRUCTURE simulation analysis). Chloroplast DNA microsatellites were used for a spatial analysis of genetic barriers. The main part of the nuclear genetic variation was explained by partition into species groups. High interspecific differentiation and low admixture of nuclear genomes, both in pure and mixed populations, support limited genetic introgression between Q. alnifolia and Q. coccifera in Cyprus. On the contrary, chloroplast DNA haplotypes were shared between the species and were locally structured suggesting cytoplasmic introgression. Occasional hybridization events followed by backcrossings with both parental species might lead to this pattern of genetic differentiation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.