Recently, power systems are facing the challenges of growing power demand, depleting fossil fuel and aggravating environmental pollution (caused by carbon emission from fossil fuel based power generation). The incorporation of alternative low carbon energy generation, i.e., Renewable Energy Sources (RESs), becomes crucial for energy systems. Effective Demand Side Management (DSM) and RES incorporation enable power systems to maintain demand, supply balance and optimize energy in an environmentally friendly manner. The wind power is a popular energy source because of its environmental and economical benefits. However, the uncertainty of wind power makes its incorporation in energy systems really difficult. To mitigate the risk of demand-supply imbalance, an accurate estimation of wind power is essential. Recognizing this challenging task, an efficient deep learning based prediction model is proposed for wind power forecasting. The proposed model has two stages. In the first stage, Wavelet Packet Transform (WPT) is used to decompose the past wind power signals. Other than decomposed signals and lagged wind power, multiple exogenous inputs (such as, calendar variable and Numerical Weather Prediction (NWP)) are also used as input to forecast wind power. In the second stage, a new prediction model, Efficient Deep Convolution Neural Network (EDCNN), is employed to forecast wind power. A DSM scheme is formulated based on forecasted wind power, day-ahead demand and price. The proposed forecasting model’s performance was evaluated on big data of Maine wind farm ISO NE, USA.
With the increasing size of cloud data centers, the number of users and virtual machines (VMs) increases rapidly. The requests of users are entertained by VMs residing on physical servers. The dramatic growth of internet services results in unbalanced network resources. Resource management is an important factor for the performance of a cloud. Various techniques are used to manage the resources of a cloud efficiently. VM-consolidation is an intelligent and efficient strategy to balance the load of cloud data centers. VM-placement is an important subproblem of the VM-consolidation problem that needs to be resolved. The basic objective of VM-placement is to minimize the utilization rate of physical machines (PMs). VM-placement is used to save energy and cost. An enhanced levy-based particle swarm optimization algorithm with variable sized bin packing (PSOLBP) is proposed for solving the VM-placement problem. Moreover, the best-fit strategy is also used with the variable sized bin packing problem (VSBPP). Simulations are done to authenticate the adaptivity of the proposed algorithm. Three algorithms are implemented in Matlab. The given algorithm is compared with simple particle swarm optimization (PSO) and a hybrid of levy flight and particle swarm optimization (LFPSO). The proposed algorithm efficiently minimized the number of running PMs. VM-consolidation is an NP-hard problem, however, the proposed algorithm outperformed the other two algorithms.
Nowadays, constrained battery life expectancy is an important issue for reliable data delivery in an Underwater Wireless Sensor Network (UWSN). Conventional transmission methodologies increase the transmission overhead, i.e., the collision of packets, which influence the data transmission. Replacement of the sensors' battery in brutal underwater environment is a difficult task. Therefore, to maintain a strategic distance from the unexpected failure of the network and to increase the life expectancy of the network, energy efficient routing protocols are required. At this end, in this paper, a proactive routing protocol with three different network types is proposed to solve the aforementioned issues. The proposed protocol adaptively changes its communication strategy depending on the type of the network, i.e., dense network, partially dense network and sparse network. This adaptive strategy helps the routing protocols to continue their transmission by avoiding the void holes. In the proposed protocol named Proactive routing Approach with Energy efficient Path Selection (PA-EPS-Case I), vertical inter-transmission layering concept is introduced (using shortest and fastest path) in the dense and partially dense region. In addition, cluster formation concept is also appended to make transmission successful in the sparse regions. The Packet Delivery Ratio (PDR) is improved by the proposed protocol with minimum End to End (E2E) delay and packet drop ratio. Scalability of the proposed routing protocols is also analyzed by varying the number of nodes from 100-500. A comparative analysis is performed with two cutting edge routing protocols namely: Weighting Depth and Forwarding Area Division Depth Based Routing (WDFAD-DBR) and Cluster-based WDFAD-DBR (C-DBR). Simulation results demonstrate that proposed protocol achieved 12.64% higher PDR with 20% decrease in E2E delay than C-DBR. Furthermore, the proposed routing protocol outperformed C-DBR in terms of packet drop ratio up to 14.29% with an increase of EC up to 30%.INDEX TERMS Underwater wireless sensor networks, adaptive transmission, void hole, geographic and opportunistic routing, mobility prediction.
Cloud computing offers various services. Numerous cloud data centers are used to provide these services to the users in the whole world. A cloud data center is a house of physical machines (PMs). Millions of virtual machines (VMs) are used to minimize the utilization rate of PMs. There is a chance of unbalanced network due to the rapid growth of Internet services. An intelligent mechanism is required to efficiently balance the network. Multiple techniques are used to solve the aforementioned issues optimally. VM placement is a great challenge for cloud service providers to fulfill the user requirements. In this paper, an enhanced levy based multi-objective gray wolf optimization (LMOGWO) algorithm is proposed to solve the VM placement problem efficiently. An archive is used to store and retrieve true Pareto front. A grid mechanism is used to improve the non-dominated VMs in the archive. A mechanism is also used for the maintenance of an archive. The proposed algorithm mimics the leadership and hunting behavior of gray wolves (GWs) in multi-objective search space. The proposed algorithm was tested on nine well-known bi-objective and tri-objective benchmark functions to verify the compatibility of the work done. LMOGWO was then compared with simple multi-objective gray wolf optimization (MOGWO) and multi-objective particle swarm optimization (MOPSO). Two scenarios were considered for simulations to check the adaptivity of the proposed algorithm. The proposed LMOGWO outperformed MOGWO and MOPSO for University of Florida 1 (UF1), UF5, UF7 and UF8 for Scenario 1. However, MOGWO and MOPSO performed better than LMOGWO for UF2. For Scenario 2, LMOGWO outperformed the other two algorithms for UF5, UF8 and UF9. However, MOGWO performed well for UF2 and UF4. The results of MOPSO were also better than the proposed algorithm for UF4. Moreover, the PM utilization rate (%) was minimized by 30% with LMOGWO, 11% with MOGWO and 10% with MOPSO.
Smart Grid (SG) plays vital role in modern electricity grid. The data is increasing with the drastic increase in number of users. An efficient technology is required to handle this dramatic growth of data. Cloud computing is then used to store the data and to provide numerous services to the consumers. There are various cloud Data Centers (DC), which deal with the requests coming from consumers. However, there is a chance of delay due to the large geographical area between cloud and consumer. So, a concept of fog computing is presented to minimize the delay and to maximize the efficiency. However, the issue of load balancing is raising; as the number of consumers and services provided by fog grow. So, an enhanced mechanism is required to balance the load of fog. In this paper, a three-layered architecture comprising of cloud, fog and consumer layers is proposed. A meta-heuristic algorithm: Improved Particle Swarm Optimization with Levy Walk (IPSOLW) is proposed to balance the load of fog. Consumers send request to the fog servers, which then provide services. Further, cloud is deployed to save the records of all consumers and to provide the services to the consumers, if fog layer is failed. The proposed algorithm is then compared with existing algorithms: genetic algorithm, particle swarm optimization, binary PSO, cuckoo with levy walk and BAT. Further, service broker policies are used for efficient selection of DC. The service broker policies used in this paper are: closest data center, optimize response time, reconfigure dynamically with load and new advance service broker policy. Moreover, response time and processing time are minimized. The IPSOLW has outperformed to its counterpart algorithms with almost 4.89% better results.INDEX TERMS Cloud computing, fog computing, smart grid, smart city, load balancing, server broker policies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.