Continuous monitoring of the central-blood-pressure waveform from deeply embedded vessels, such as the carotid artery and jugular vein, has clinical value for the prediction of all-cause cardiovascular mortality. However, existing non-invasive approaches, including photoplethysmography and tonometry, only enable access to the superficial peripheral vasculature. Although current ultrasonic technologies allow non-invasive deep-tissue observation, unstable coupling with the tissue surface resulting from the bulkiness and rigidity of conventional ultrasound probes introduces usability constraints. Here, we describe the design and operation of an ultrasonic device that is conformal to the skin and capable of capturing blood-pressure waveforms at deeply embedded arterial and venous sites. The wearable device is ultrathin (240 μm) and stretchable (with strains up to 60%), and enables the non-invasive, continuous and accurate monitoring of cardiovascular events from multiple body locations, which should facilitate its use in a variety of clinical environments.
This paper reports theoretical analysis and experimental results on a new class of rectangular plate and ringshaped contour-mode piezoelectric aluminum nitride radio-frequency microelectromechanical systems resonators that span a frequency range from 19 to 656 MHz showing high-quality factors in air (Q max = 4300 at 229.9 MHz), low motional resistance (ranging from 50 to 700 Ω), and center frequencies that are lithographically defined. These resonators achieve the lowest value of motional resistance ever reported for contour-mode resonators and combine it with high Q factors, therefore enabling the fabrication of arrays of high-performance microresonators with different frequencies on a single chip. Uncompensated temperature coefficients of frequency of approximately 25 ppm/°C were also recorded for these resonators. Initial discussions on mass loading mechanisms induced by metal electrodes and energy loss phenomenon are provided. KeywordsAluminum nitride, contour-mode resonators, microelectromechanical systems (MEMS) resonators, piezoelectric resonators, radio-frequency (RF) MEMS This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of the University of Pennsylvania's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to view this document, you agree to all provisions of the copyright laws protecting it. Abstract-This paper reports theoretical analysis and experimental results on a new class of rectangular plate and ring-shaped contour-mode piezoelectric aluminum nitride radio-frequency microelectromechanical systems resonators that span a frequency range from 19 to 656 MHz showing high-quality factors in air (Q max = 4300 at 229.9 MHz), low motional resistance (ranging from 50 to 700 ), and center frequencies that are lithographically defined. These resonators achieve the lowest value of motional resistance ever reported for contour-mode resonators and combine it with high Q factors, therefore enabling the fabrication of arrays of high-performance microresonators with different frequencies on a single chip. Uncompensated temperature coefficients of frequency of approximately 25 ppm C were also recorded for these resonators. Initial discussions on mass loading mechanisms induced by metal electrodes and energy loss phenomenon are provided.[ 2006-0019]Index Terms-Aluminum nitride, contour-mode resonators, microelectromechanical systems (MEMS) resonators, piezoelectric resonators, radio-frequency (RF) MEMS.
Direct conversion of light into mechanical work, known as the photomechanical effect, is an emerging field of research, largely driven by the development of novel molecular and polymeric material systems. However, the fundamental impediment is that the previously explored materials and structures do not simultaneously offer fast and wavelength-selective response, reversible actuation, low-cost fabrication and large deflection. Here, we demonstrate highly versatile photoactuators, oscillators and motors based on polymer/single-walled carbon nanotube bilayers that meet all the above requirements. By utilizing nanotubes with different chirality distributions, chromatic actuators that are responsive to selected wavelength ranges are achieved. The bilayer structures are further configured as smart 'curtains' and light-driven motors, demonstrating two examples of envisioned applications.
One-step direct nanoimprinting of metal nanoparticles was investigated to fabricate nano-/microscale metallic structures such as nanodot and nanowire arrays. This was done at low temperatures and pressures, utilizing the low melting temperature and viscosity of metal nanoparticle solutions. Through precise control of the fluidic properties of the nanoparticle solution and the mold design, high-quality nanoscale features with no or negligible residual layer were nanoimprinted. Nanoscale electronic devices were also demonstrated, including nanowire resistors and nanochannel organic field effect transistors with an air-stable semiconducting polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.