Mesenchymal stem cells (MSCs) represent a promising therapeutic approach in nerve tissue engineering. To date, the local implantation of MSC in injured nerves has been the only route of administration used. In case of multiple sites of injury, the systemic administration of cells capable of reaching damaged nerves would be advisable. In this regard, we found that an intravenous administration of adipose-derived MSC (ASC) 1 week after sciatic nerve crush injury, a murine model of acute axonal damage, significantly accelerated the functional recovery. Sciatic nerves from ASC-treated mice showed the presence of a restricted number of undifferentiated ASC together with a significant improvement in fiber sprouting and the reduction of inflammatory infiltrates for up to 3 weeks. Besides the immune modulatory effect, our results show that ASC may contribute to peripheral nerve regeneration because of their ability to produce in culture neuroprotective factors such as insulin-like growth factor I, brain-derived neurotrophic factor, or basic fibroblast growth factor. In addition to this production in vitro, we interestingly found that the concentration of glial-derived neurotrophic factor (GDNF) was significantly increased in the sciatic nerves in mice treated with ASC. Since no detectable levels of GDNF were observed in ASC cultures, we hypothesize that ASC induced the local production of GDNF by Schwann cells. In conclusion, we show that systemically injected ASC have a clear therapeutic potential in an acute model of axonal damage. Among the possible mechanisms promoting nerve regeneration, our results rule out a process of trans-differentiation and rather suggest the relevance of a bystander effect, including the production of in situ molecules, which, directly or indirectly through a cross-talk with local glial cells, may modulate the local environment with the down-regulation of inflammation and the promotion of axonal regeneration.
Anti-myelin oligodendrocyte glycoprotein antibodies (MOG-Ab) recently emerged as a potential biomarker in patients with inflammatory demyelinating diseases of the central nervous system. We here compare the clinical and laboratory findings observed in a cohort of MOG-Ab seropositive and seronegative cases and describe IgG subclass analysis results. Consecutive serum samples referred to Verona University Neuropathology Laboratory for aquaporin-4 (AQP4)-Ab and/or MOG-Ab testing were analysed between March 2014 and May 2017. The presence of AQP4-Ab was determined using a cell-based assay. A live cell immunofluorescence assay was used for the detection of MOG-IgG and IgG subclass analysis. Among 454 analysed samples, 29 were excluded due to AQP4-Ab positivity or to the final demonstration of a disorder not compatible with MOG-Ab. We obtained clinical data in 154 out of 425 cases. Of these, 22 subjects resulted MOG-Ab positive. MOG-Ab positive patients were mainly characterised by the involvement of the optic nerve and/or spinal cord. Half of the cases presented relapses and the recovery was usually partial. Brain MRI was heterogeneous while short lesions were the prevalent observation on spinal cord MRI. MOG-Ab titre usually decreased in non-relapsing cases. In all MOG-IgG positive cases, we observed IgG1 antibodies, which were predominant in most subjects. IgG2 (5/22), IgG3 (9/22) and IgG4 (3/22) antibodies were also detectable. We confirm that MOG-Ab-related syndromes have distinct features in the spectrum of demyelinating conditions, and we describe the possible role of the different IgG subclasses in this condition.Electronic supplementary materialThe online version of this article (doi:10.1007/s00415-017-8635-4) contains supplementary material, which is available to authorized users.
The disease phenotype of bovine spongiform encephalopathy (BSE) and the molecular/ biological properties of its prion strain, including the host range and the characteristics of BSE-related disorders, have been extensively studied since its discovery in 1986. In recent years, systematic testing of the brains of cattle coming to slaughter resulted in the identification of at least two atypical forms of BSE. These emerging disorders are characterized by novel conformers of the bovine pathological prion protein (PrPTSE), named high-type (BSE-H) and low-type (BSE-L). We recently reported two Italian atypical cases with a PrPTSE type identical to BSE-L, pathologically characterized by PrP amyloid plaques and known as bovine amyloidotic spongiform encephalopathy (BASE). Several lines of evidence suggest that BASE is highly virulent and easily transmissible to a wide host range. Experimental transmission to transgenic mice overexpressing bovine PrP (Tgbov XV) suggested that BASE is caused by a prion strain distinct from the BSE isolate. In the present study, we experimentally infected Friesian and Alpine brown cattle with Italian BSE and BASE isolates via the intracerebral route. BASE-infected cattle developed amyotrophic changes accompanied by mental dullness. The molecular and neuropathological profiles, including PrP deposition pattern, closely matched those observed in the original cases. This study provides clear evidence of BASE as a distinct prion isolate and discloses a novel disease phenotype in cattle.
Neurofilament light chain (NFL) levels reflect axonal damage in different inflammatory and neurodegenerative central nervous system conditions, in correlation with disease severity. Our aim was to determine the possible diagnostic and prognostic value of serum and cerebrospinal fluid (CSF) NFL levels in subjects with different forms of acquired peripheral neuropathies (PN). Paired serum and CSF samples of 25 patients with acquired PN were analysed for NFL using an ultrasensitive technique (Quanterix, Simoa, Lexington, MA, USA) and compared with a group of 25 age-matched healthy subjects. Demographic, clinical, CSF and neurophysiological data were reviewed. Cases with Guillain-Barré syndrome (N = 5), multifocal motor neuropathy (N = 3), chronic inflammatory demyelinating polyneuropathy (CIDP) and variants (N = 12), anti-myelin-associated glycoprotein (MAG) neuropathy (N = 3), both CIDP and anti-MAG neuropathy (N = 1), and non-systemic vasculitic neuropathy (N = 1) were studied. NFL levels were significantly (P < 0.001) increased in patients with PN and were higher in the CSF (median: 1407 pg/mL, range: 140.2-12 661) than in serum (median: 31.52 pg/mL, range: 4.33-1178). A statistically significant correlation was observed between serum and CSF levels in cases with blood-nerve-barrier damage (r = 0.71, P < 0.01), and between serum NFL levels and disease activity at sampling (r = 0.52, P < 0.01) and at last follow-up (r = 0.53, P < 0.01) in all subjects. The increase of NFL values in both serum and CSF of patients with acquired PN and the significant correlation between serum NFL levels, disease severity and final outcome support the possible role of NFL as disease activity and prognostic biomarker also in peripheral nervous system disorders.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.