Crowdsourced evaluation is a promising method of evaluating engineering design attributes that require human input. The challenge is to correctly estimate scores using a massive and diverse crowd, particularly when only a small subset of evaluators has the expertise to give correct evaluations. Since averaging evaluations across all evaluators will result in an inaccurate crowd evaluation, this paper benchmarks a crowd consensus model that aims to identify experts such that their evaluations may be given more weight. Simulation results indicate this crowd consensus model outperforms averaging when it correctly identifies experts in the crowd, under the assumption that only experts have consistent evaluations. However, empirical results from a real human crowd indicate this assumption may not hold even on a simple engineering design evaluation task, as clusters of consistently wrong evaluators are shown to exist along with the cluster of experts. This suggests that both averaging evaluations and a crowd consensus model that relies only on evaluations may not be adequate for engineering design tasks, accordingly calling for further research into methods of finding experts within the crowd.
Quantitative preference models are used to predict customer choices among design alternatives by collecting prior purchase data or survey answers. This paper examines how to improve the prediction accuracy of such models without collecting more data or changing the model. We propose to use features as an intermediary between the original customer-linked design variables and the preference model, transforming the original variables into a feature representation that captures the underlying design preference task more effectively. We apply this idea to automobile purchase decisions using three feature learning methods (principal component analysis (PCA), low rank and sparse matrix decomposition (LSD), and exponential sparse restricted Boltzmann machine (RBM)) and show that the use of features offers improvement in prediction accuracy using over 1 million real passenger vehicle purchase data. We then show that the interpretation and visualization of these feature representations may be used to help augment data-driven design decisions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.