This study presents an investigation of the usability and suitability of natural rocks as cutting tool materials. Therefore, indexable inserts are manufactured from eight different rocks and two mono minerals in this study and are used for turning of an aluminium alloy. Besides that, a characterization of the rock properties is performed. The wear of the rock tools and the surface roughness of the workpiece generated by the tools are used to evaluate their operational behaviour. Subsequently, the rock properties and the corresponding operational behaviour are used to assess the suitability of the rocks as cutting tool material. The results show that rock inserts can be used as cutting material for the turning of an aluminium alloy showing a width of wear marks between 83 and 1665 µm at the flank face after a cutting length of 500 m depending on the rock used. Furthermore, it is shown that rock tools are able to achieve surface roughness values which are comparable to those obtainable by using a conventional cemented carbide insert. The study shows that natural rocks can generally be used as alternative cutting material for the turning of aluminium. In addition a possible way for a systematic investigation and assessment of the suitability of natural rocks as cutting tool materials is presented, the relevance of the rock properties for the operational behaviour of the rock inserts is described and relevant future research topics concerning the use of rocks as cutting tool material are identified.
Article highlights
Demonstrating the possibility to use natural rocks as alternative environmentally friendly cutting tool
material.
Evaluation of operational behaviour and wear mechanisms of rock tools in turning aluminium.
Identification of rock properties relevant for the operational behaviour of rock inserts.
During the manufacturing of ceramic components, grinding is an important manufacturing step. It influences the workpiece quality and the operational reliability. Thermomechanical loads during grinding can influence the lifetime and operational reliability of ceramics by modifying their bending strength and subsurface properties. Therefore, it is necessary to consider the influence of the grinding forces and mechanical loads on the strength of the ceramics in order to design a suitable grinding process. In this investigation, a quick-stop device is used to interrupt the grinding process of the newly developed mixed oxide ceramic SHYTZ (strontium hexaaluminate/yttria-toughened zirconia) and the market-established ceramic ATZ (alumina-toughened zirconia). Subsequently, an analysis of the occurring material removal phenomena, the number of active abrasive grains, and the real thermomechanical loads is carried out. It was found that the number of active grains and the material removal phenomena are influenced by the tool specifications. Besides that, the experimentally determined number of active grains was found to be up to 14 times higher than predicted by an analytical model given in literature. Consequently, the calculated single grain chip thickness was found to be up to 12.1% lower than analytically predicted. The investigation of the process forces and thermal loads showed up to 52% higher loads for ATZ than for SHYTZ. The subsequent analysis of the resulting bending strength of the ceramics revealed a lower influence of the grinding process on the strength of SHYTZ than for ATZ. Furthermore, a correlation between the used tool bonding and the resulting thermomechanical loads, bending strength, and residual stresses could be observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.