Brain-machine interface (BMI) efforts have been focused on using either invasive implanted electrodes or training-extensive conscious manipulation of brain rhythms to control prosthetic devices. Here we demonstrate an excellent prediction of movement trajectory by real-time magnetoencephalography (MEG). Ten human subjects copied a pentagon for 45 s using an X-Y joystick while MEG signals were being recorded from 248 sensors. A linear summation of weighted contributions of the MEG signals yielded a predicted movement trajectory of high congruence to the actual trajectory (median correlation coefficient: r=0.91 and 0.97 for unsmoothed and smoothed predictions, respectively). This congruence was robust since it remained high in cross-validation analyses (based on the first half of data to predict the second half; median correlation coefficient: r=0.76 and 0.85 for unsmoothed and smoothed predictions, respectively).
Shear wave elastography shows tendon softening in rotator cuff disease. It captures information not obtained by a morphologic evaluation alone; however, a poor correlation with symptoms suggests that SWE will be less useful in workups for shoulder pain than for preoperative assessments of tendon quality. Deltoid muscle softening seen in morphologically abnormal and symptomatic patients requires further exploration.
As such, this article aims to review the current standards for MRI of the shoulder used in routine practice. Furthermore, we will discuss some of the most recent advances in shoulder MRI, with particular emphasis on the applicability of an additional axial 3D T1-weighted FLASH sequence with Dixon-based water-fat separation in routine clinical practice that can be useful in characterizing several commonly encountered pathologic processes of the shoulder joint.
Musculoskeletal injections serve a variety of diagnostic and therapeutic purposes, with ultrasonography (US) guidance having many advantages: no ionizing radiation, real-time guidance, high spatial resolution, excellent soft tissue contrast, and the ability to identify and avoid critical structures. Sonography can be cost effective and afford flexibility in resource-constrained settings. This article describes US-guided musculoskeletal injections relevant to many radiology practices and provides experience-based suggestions. Structures covered include multiple joints (shoulder, hip), bursae (iliopsoas, subacromial-subdeltoid, greater trochanteric), peripheral nerves (sciatic, radial), and tendon sheaths (posterior tibial, peroneal, flexor hallucis longus, Achilles, long head of the biceps). Trigger point and similar targeted steroid injections, as well as calcific tendinopathy barbotage, are also described.
High density, whole head magnetoencephalography (MEG) was used to study ten healthy human subjects (five females and five males) participating in a continuous shape-copying task. The task was performed with eyes open and fixated. The three-part task began with 45 s of fixation on a blue dot, after which the dot turned red, and a pentagon was presented around it. Subjects continued to fixate on the red dot for 45 s, after which it turned green. The green dot instructed subjects to begin copying the shape continuously for 45 s, without visual feedback, using a joystick mounted at arm's length. Data were collected at 1,017.25 Hz with a 248 sensor axial-gradiometer system. After cardiac artifact subtraction (Leuthold 2003), each corner was identified, and 1 s epochs (centered on each corner) were averaged and filtered from 1 to 44 Hz. Grand average flux maps demonstrated dipolar distributions identifying the most relevant sensors. With these sensors, which were located over flux extrema (Valaki et al. 2004), dipole models were used for source localization within subjects. Consistent dipole locations included the left motor cortex, bilateral parietal, frontal and temporal regions, and the occipital cortex. These results indicate that MEG source-localization may be derived from a limited number of trials of continuous data, and that visual cortex activity may be consistently present during continuous motor activity despite the absence of novel visual stimulation and eye-movements.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.