Interest in graphene as a two‐dimensional quantum‐well material for energy applications and nanoelectronics has increased exponentially in the last few years. The recent advances in large‐area single‐sheet fabrication of pristine graphene have opened unexplored avenues for expanding from nano‐ to meso‐scale applications. The relatively low level of absorptivity and the short lifetimes of excitons of single‐sheet graphene suggest that it needs to be coupled with light sensitizers in order to explore its feasibility for photonic applications, such as solar‐energy conversion. Red‐emitting CdSe quantum dots are employed for photosensitizing single‐sheet graphene with areas of several square centimeters. Pyridine coating of the quantum dots not only enhances their adhesion to the graphene surface, but also provides good electronic coupling between the CdSe and the two‐dimensional carbon allotrope. Illumination of the quantum dots led to injection of n‐carrier in the graphene phase. Time‐resolved spectroscopy reveals three modes of photoinduced electron transfer between the quantum dots and the graphene occurring in the femtosecond and picosecond time‐domains. Transient absorption spectra provide evidence for photoinduced hole‐shift from the CdSe to the pyridine ligands, thereby polarizing the surface of the quantum dots. That is, photoinduced electrical polarization, which favors the simultaneous electron transfer from the CdSe to the graphene phase. These mechanistic insights into the photoinduced interfacial charge transfer have a promising potential to serve as guidelines for the design and development of composites of graphene and inorganic nanomaterials for solar‐energy conversion applications.
The space charge region (SCR) width of the Schottky barrier (SB) that forms on the interface between aluminum and organic semiconductor polymer of bulk-heterojunction (BH) organic photodiodes (OPD) based on poly(3-hexylthiophene) (P3HT): [6,6]-phenyl-C61-butyric acid methylester (PCBM) blend, has been investigated according to reverse voltage bias over the OPD. We focused on the effect of incident light power (ILP) on the SCR and the I-V characteristics of the devices. Comparison of the mathematical models and experimental data measured under different ILPs indicate a dependency of SCR to the ILP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.