The Challenge on Liver Ultrasound Tracking (CLUST) was held in conjunction with the MICCAI 2014 conference to enable direct comparison of tracking methods for this application. This paper reports the outcome of this challenge, including setup, methods, results and experiences. The database included 54 2D and 3D sequences of the liver of healthy volunteers and tumor patients under free breathing. Participants had to provide the tracking results of 90% of the data (test set) for pre-defined point-landmarks (healthy volunteers) or for tumor segmentations (patient data). In this paper we compare the best six methods which participated in the challenge. Quantitative evaluation was performed by the organizers with respect to manual annotations. Results of all methods showed a mean tracking error ranging between 1.4 mm and 2.1 mm for 2D points, and between 2.6 mm and 4.6 mm for 3D points. Fusing all automatic results by considering the median tracking results, improved the mean error to 1.2 mm (2D) and 2.5 mm (3D). For all methods, the performance is still not comparable to human inter-rater variability, with a mean tracking error of 0.5–0.6 mm (2D) and 1.2–1.8 mm (3D). The segmentation task was fulfilled only by one participant, resulting in a Dice coefficient ranging from 76.7% to 92.3%. The CLUST database continues to be available and the online leader-board will be updated as an ongoing challenge.
Liver motion estimation and prediction during free-breathing from 2D ultrasound images can substantially reduce the in-plane motion uncertainty and hence treatment margins. Employing an accurate tracking method while avoiding non-linear temporal prediction would be favorable. This approach has the potential to shorten treatment time compared to breath-hold and gated approaches, and increase treatment efficiency and safety.
Real-time ultrasound image acquisition is a pivotal resource in the medical community, in spite of its limited image quality. This poses challenges to image registration methods, particularly to those driven by intensity values. We address these difficulties in a novel diffeomorphic registration technique for tumor tracking in series of 2-D liver ultrasound. Our method has two main characteristics: 1) each voxel is described by three image features: intensity, local phase, and phase congruency; 2) we compute a set of forces from either local information (Demons-type of forces), or spatial correspondences supplied by a block-matching scheme, from each image feature. A family of update deformation fields which are defined by these forces, and inform upon the local or regional contribution of each image feature are then composed to form the final transformation. The method is diffeomorphic, which ensures the invertibility of deformations. The qualitative and quantitative results yielded by both synthetic and real clinical data show the suitability of our method for the application at hand.
Graphical abstractHighlightsA novel method for affine registration of fetal neurosonography and brain MRI proposed.Conversion of fetal MRI into pseudo US image described.All data were successfully aligned using robust block-matching approach.Average of 27 US volumes revealed near-complete anatomy of the fetal brain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.