SARS-CoV-2, the virus that causes coronavirus disease 2019 (COVID-19), is thought to spread from person to person primarily by the respiratory route and mainly through close contact (1). Community mitigation strategies can lower the risk for disease transmission by limiting or preventing personto-person interactions (2). U.S. states and territories began implementing various community mitigation policies in March 2020. One widely implemented strategy was the issuance of orders requiring persons to stay home, resulting in decreased population movement in some jurisdictions (3). Each state or territory has authority to enact its own laws and policies to protect the public's health, and jurisdictions varied widely in the type and timing of orders issued related to stay-at-home requirements. To identify the broader impact of these stay-athome orders, using publicly accessible, anonymized location data from mobile devices, CDC and the Georgia Tech Research Institute analyzed changes in population movement relative to stay-at-home orders issued during March 1-May 31, 2020, by all 50 states, the District of Columbia, and five U.S. territories.* During this period, 42 states and territories issued mandatory stay-at-home orders. When counties subject to mandatory state-and territory-issued stay-at-home orders were stratified along rural-urban categories, movement decreased significantly relative to the preorder baseline in all strata. Mandatory stayat-home orders can help reduce activities associated with the spread of COVID-19, including population movement and close person-to-person contact outside the household. Data on state and territorial stay-at-home orders were obtained from government websites containing executive or administrative orders or press releases for each jurisdiction. Each order was analyzed and coded into one of five mutually exclusive categories: 1) mandatory for all persons; 2) mandatory only for persons in certain areas of the jurisdiction; 3) mandatory only for persons at increased risk in the jurisdiction; 4) mandatory only for persons at increased risk in certain areas of the jurisdiction; or 5) advisory or recommendation (i.e., nonmandatory). Jurisdictions that did not issue an order were coded as having no state-or territory-issued
Background The interaction between COVID-19, non-communicable diseases, and chronic infectious diseases such as HIV and tuberculosis is unclear, particularly in low-income and middle-income countries in Africa. South Africa has a national HIV prevalence of 19% among people aged 15-49 years and a tuberculosis prevalence of 0•7% in people of all ages. Using a nationally representative hospital surveillance system in South Africa, we aimed to investigate the factors associated with in-hospital mortality among patients with COVID-19. MethodsIn this cohort study, we used data submitted to DATCOV, a national active hospital surveillance system for COVID-19 hospital admissions, for patients admitted to hospital with laboratory-confirmed SARS-CoV-2 infection between March 5, 2020, and March 27, 2021. Age, sex, race or ethnicity, and comorbidities (hypertension, diabetes, chronic cardiac disease, chronic pulmonary disease and asthma, chronic renal disease, malignancy in the past 5 years, HIV, and past and current tuberculosis) were considered as risk factors for COVID-19-related in-hospital mortality. COVID-19 in-hospital mortality, the main outcome, was defined as a death related to COVID-19 that occurred during the hospital stay and excluded deaths that occurred because of other causes or after discharge from hospital; therefore, only patients with a known in-hospital outcome (died or discharged alive) were included. Chained equation multiple imputation was used to account for missing data and random-effects multivariable logistic regression models were used to assess the role of HIV status and underlying comorbidities on COVID-19 in-hospital mortality. FindingsAmong the 219 265 individuals admitted to hospital with laboratory-confirmed SARS-CoV-2 infection and known in-hospital outcome data, 51 037 (23•3%) died. Most commonly observed comorbidities among individuals with available data were hypertension in 61 098 (37•4%) of 163 350, diabetes in 43 885 (27•4%) of 159 932, and HIV in 13 793 (9•1%) of 151 779. Tuberculosis was reported in 5282 (3•6%) of 146 381 individuals. Increasing age was the strongest predictor of COVID-19 in-hospital mortality. Other factors associated were HIV infection (adjusted odds ratio 1•34, 95% CI 1•27-1•43), past tuberculosis (1•26, 1•15-1•38), current tuberculosis (1•42, 1•22-1•64), and both past and current tuberculosis (1•48, 1•32-1•67) compared with never tuberculosis, as well as other described risk factors for COVID-19, such as male sex; non-White race; underlying hypertension, diabetes, chronic cardiac disease, chronic renal disease, and malignancy in the past 5 years; and treatment in the public health sector. After adjusting for other factors, people with HIV not on antiretroviral therapy (ART; adjusted odds ratio 1•45, 95% CI 1•22-1•72) were more likely to die in hospital than were people with HIV on ART. Among people with HIV, the prevalence of other comorbidities was 29•2% compared with 30•8% among HIV-uninfected individuals. Increasing number of comorbidities was associated with...
, this report was posted as an MMWR Early Release on the MMWR website (https://www.cdc.gov/mmwr). CDC recommends a combination of evidence-based strategies to reduce transmission of SARS-CoV-2, the virus that causes COVID-19 (1). Because the virus is transmitted predominantly by inhaling respiratory droplets from infected persons, universal mask use can help reduce transmission (1). Starting in April, 39 states and the District of Columbia (DC) issued mask mandates in 2020. Reducing person-to-person interactions by avoiding nonessential shared spaces, such as restaurants, where interactions are typically unmasked and physical distancing (≥6 ft) is difficult to maintain, can also decrease transmission (2). In March and April 2020, 49 states and DC prohibited any on-premises dining at restaurants, but by mid-June, all states and DC had lifted these restrictions. To examine the association of state-issued mask mandates and allowing on-premises restaurant dining with COVID-19 cases and deaths during March 1-December 31, 2020, countylevel data on mask mandates and restaurant reopenings were compared with county-level changes in COVID-19 case and death growth rates relative to the mandate implementation and reopening dates. Mask mandates were associated with decreases in daily COVID-19 case and death growth rates 1-20, 21-40, 41-60, 61-80, and 81-100 days after implementation. Allowing any on-premises dining at restaurants was associated with increases in daily COVID-19 case growth rates 41-60, 61-80, and 81-100 days after reopening, and increases in daily COVID-19 death growth rates 61-80 and 81-100 days after reopening. Implementing mask mandates was associated with reduced SARS-CoV-2 transmission, whereas reopening restaurants for on-premises dining was associated with increased transmission. Policies that require universal mask use and restrict any on-premises restaurant dining are important components of a comprehensive strategy to reduce exposure to and transmission of SARS-CoV-2 (1). Such efforts are increasingly important given the emergence of highly transmissible SARS-CoV-2 variants in the United States (3,4). County-level data on state-issued mask mandates and restaurant closures were obtained from executive and administrative orders
Background The first wave of COVID-19 in South Africa peaked in July, 2020, and a larger second wave peaked in January, 2021, in which the SARS-CoV-2 501Y.V2 (Beta) lineage predominated. We aimed to compare in-hospital mortality and other patient characteristics between the first and second waves.Methods In this prospective cohort study, we analysed data from the DATCOV national active surveillance system for COVID-19 admissions to hospital from March 5, 2020, to March 27, 2021. The system contained data from all hospitals in South Africa that have admitted a patient with COVID-19. We used incidence risk for admission to hospital and determined cutoff dates to define five wave periods: pre-wave 1, wave 1, post-wave 1, wave 2, and post-wave 2. We compared the characteristics of patients with COVID-19 who were admitted to hospital in wave 1 and wave 2, and risk factors for in-hospital mortality accounting for wave period using random-effect multivariable logistic regression.Findings Peak rates of COVID-19 cases, admissions, and in-hospital deaths in the second wave exceeded rates in the first wave: COVID-19 cases, 240•4 cases per 100 000 people vs 136•0 cases per 100 000 people; admissions, 27•9 admissions per 100 000 people vs 16•1 admissions per 100 000 people; deaths, 8•3 deaths per 100 000 people vs 3•6 deaths per 100 000 people. The weekly average growth rate in hospital admissions was 20% in wave 1 and 43% in wave 2 (ratio of growth rate in wave 2 compared with wave 1 was 1•19, 95% CI 1•18-1•20). Compared with the first wave, individuals admitted to hospital in the second wave were more likely to be age 40-64 years (adjusted odds ratio [aOR] 1•22, 95% CI 1•14-1•31), and older than 65 years (aOR 1•38, 1•25-1•52), compared with younger than 40 years; of Mixed race (aOR 1•21, 1•06-1•38) compared with White race; and admitted in the public sector (aOR 1•65, 1•41-1•92); and less likely to be Black (aOR 0•53, 0•47-0•60) and Indian (aOR 0•77, 0•66-0•91), compared with White; and have a comorbid condition (aOR 0•60, 0•55-0•67).For multivariable analysis, after adjusting for weekly COVID-19 hospital admissions, there was a 31% increased risk of in-hospital mortality in the second wave (aOR 1•31, 95% CI 1•28-1•35). In-hospital case-fatality risk increased from 17•7% in weeks of low admission (<3500 admissions) to 26•9% in weeks of very high admission (>8000 admissions; aOR 1•24, 1•17-1•32).Interpretation In South Africa, the second wave was associated with higher incidence of COVID-19, more rapid increase in admissions to hospital, and increased in-hospital mortality. Although some of the increased mortality can be explained by admissions in the second wave being more likely in older individuals, in the public sector, and by the increased health system pressure, a residual increase in mortality of patients admitted to hospital could be related to the new Beta lineage.
Altered recombination patterns along non-disjoined chromosomes is the first molecular correlate identified for non-disjunction in humans. To understand better the factors related to this correlate, we have asked to what extent is recombination altered in an egg with a disomic chromosome: are patterns limited to the non-disjoined chromosome or do they extend to the entire cell? More specifically, we asked whether there is reduced recombination in the total genome of an egg with a non-disjoined chromosome 21 and no detectable recombination. We chose this subclass of non-disjoined chromosomes to enrich potentially for extremes in recombination. We found a statistically significant cell-wide reduction in the mean recombination rate in these eggs with non-disjoined chromosomes 21; no specific chromosomes were driving this effect. Most importantly, we found that this reduction was consistent with normal variation in recombination observed among eggs. Thus, given that recombination is a multifactorial trait, these data suggest that when the number of genome-wide recombination events is less than some threshold, specific chromosomes may be at an increased risk for non-disjunction. Further studies are required to confirm these results, to determine the importance of genetic and environmental factors that regulate recombination and to determine their impact on non-disjunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.