of marine red seaweeds (Jania rubens, Corallina mediterranea and Pterocladia capillacea), J. Taibah Univ. Sci. (2015), http://dx.
AbstractSeaweeds are potential renewable resources in the marine environment. The antibacterial activity of Jania rubens, Corallina mediterranea and Pterocladia capillacea were analyzed against human pathogenic bacteria. The present study was performed to investigate the phytochemical constituents of seaweeds, such as alkaloids, flavonoids, steroids, terpenoids and phlobatannins. In this study, we estimated phenols, flavonoids, tannins, pigments and mineral contents and determined the hydrogen peroxide scavenging activity, reducing power and total antioxidant activity of various extracts of selected seaweeds. Phytochemicals were extracted from the three seaweeds using various solvents, such as methanol, ethanol, acetone and chloroform. Among the various extracts, the methanolic extract was found to have the highest reducing power and total antioxidant capacity. We evaluated the seaweeds against Vibrio fluvialis, and Pterocladia capillacea was the most effective at controlling its growth. The highest zone of inhibition was recorded in the methanol extract. The chemical constituents of the seaweeds were characterized by GC-MS, which showed that they contain organic compounds, such as 1,2-benzenedicarboxylic acid.
Coral reefs are the most biodiverse and biologically productive of all marine ecosystems. Corals harbor diverse and abundant prokaryotic groups. However, little is known about the diversity of coral-associated microorganisms. We used molecular techniques to identify and compare the culturable bacterial assemblages associated with the soft coral Sarcophyton glaucum from the Red sea. Different media were utilized for microbial isolation, and the phylogeny of the culturable bacteria associated with the coral was analyzed based on 16S rDNA sequencing. The coral associated bacteria were found to be representatives within the Gammaproteobacteria, Actinobacteria, and Firmicutes. Antimicrobial activities of twenty bacterial isolates were tested against four pathogenic bacteria (Staphylococcus aureus, Klebsiella pneumonia, Pseudomonas aeruginosa, Vibrio fluvialis) and three fungi (Penicillium sp., Aspergillus niger, Candida albicans). A relatively high proportion of bacterial strains displayed distinct antibacterial and antifungal activities, suggesting that soft coral-associated microorganisms may aid their host in protection against marine pathogens. Members of genera Bacillus and Pseudomonas had the highest proportion of antimicrobial activity which supported the hypothesis that they might play a protective role in the coral hosts.
In this study we investigated the phytoconstituents Calluna vulgaris, Ferula hermonis and Tribulus terrestris, and then assessed their possible biological activities by using standard methods. A preliminary phytochemical investigation of the three extracts revealed the presence of alkaloids, flavonoids, proteins, lipids, phenolic compounds, saponins, sterols and amino acids. Three extracts showed anti-oxidant effect as they inhibited the 1,1-diphenyl-2-picryl hydrazyl (DPPH) oxidation and production of thiobarbituric acid reactive substances (TBARS). Moreover, three extracts showed anti-acetylcholiesterase (AChE) and this effect was concentration dependent. C. vulgaris was the most potent inhibitor of AChE. Furthermore, the three plant extracts had an inhibitory effect toward α-glucosidase. The inhibitory effect was concentration dependent and the most potent inhibitor for α-glucosidase was the extract from T. terrestris. Calluna vulgaris showed anti-inflammatory effect at tested concentrations while the other two extracts exhibited this effect only at concentration of 25 μg/mL. Finally, C. vulgaris had a significant effect against pathogenic bacteria (Agrobacterium tumefaciens, Erwinia sp., Klebsiella pneumonia and Pseudomonas aeruginosa) in comparison to other extracts from Ferula sp., or Tribulus sp. In conclusion, all tested extracts could be promising sources for the treatment of diabetes, Alzheimer's disease, infectious diseases and oxidative stress related disorders because they are rich in phenols and flavonoids that give anti-oxidant molecules and produce an inhibitory effect against the tested enzymes.
Three different azo dyes such as Fast red, metanil yellow and Fast orange were examined for their decolorization by O. oeni ML34. Fast red (FR) was decolorized by 68%, whereas the other dyes were removed by only about 30%. The effects of glucose addition, substrate (dye) concentration and environmental factors (temperature, pH) on decolorization were investigated by two-level factorial design. The statistical analyses revealed that glucose specifically increases the extent of FR decolorization. A glucose level of 5 g/l was the optimum concentration for removal of, FR reaching a decolorization percentage of up to 93%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.