Highlights d Cardiac fibroblasts and endothelial cells induce hiPSCcardiomyocyte maturation d CX43 gap junctions form between cardiac fibroblasts and cardiomyocytes d cAMP-pathway activation contributes to hiPSCcardiomyocyte maturation d Patient-derived hiPSC-cardiac fibroblasts cause arrhythmia in microtissues
Summary A renewable source of human monocytes and macrophages would be a valuable alternative to primary cells from peripheral blood (PB) in biomedical research. We developed an efficient protocol to derive monocytes and macrophages from human induced pluripotent stem cells (hiPSCs) and performed a functional comparison with PB-derived cells. hiPSC-derived monocytes were functional after cryopreservation and exhibited gene expression profiles comparable with PB-derived monocytes. Notably, hiPSC-derived monocytes were more activated with greater adhesion to endothelial cells under physiological flow. hiPSC-derived monocytes were successfully polarized to M1 and M2 macrophage subtypes, which showed similar pan- and subtype-specific gene and surface protein expression and cytokine secretion to PB-derived macrophages. hiPSC-derived macrophages exhibited higher endocytosis and efferocytosis and similar bacterial and tumor cell phagocytosis to PB-derived macrophages. In summary, we developed a robust protocol to generate hiPSC monocytes and macrophages from independent hiPSC lines that showed aspects of functional maturity comparable with those from PB.
The vascular system is one of the first to develop during embryogenesis and is essential for all organs and tissues in our body to develop and function. It has many essential roles including controlling the absorption, distribution and excretion of compounds and therefore determines the pharmacokinetics of drugs and therapeutics. Vascular homeostasis is under tight physiological control which is essential for maintaining tissues in a healthy state. Consequently, disruption of vascular homeostasis plays an integral role in many disease processes, making cells of the vessel wall attractive targets for therapeutic intervention. Experimental models of blood vessels can therefore contribute significantly to drug development and aid in predicting the biological effects of new drug entities. The increasing availability of human induced pluripotent stem cells (hiPSC) derived from healthy individuals and patients have accelerated advances in developing experimental in vitro models of the vasculature: human endothelial cells (ECs), pericytes and vascular smooth muscle cells (VSMCs), can now be generated with high efficiency from hiPSC and used in 'microfluidic chips' (also known as 'organ-on-chip' technology) as a basis for in vitro models of blood vessels. These near physiological scaffolds allow the controlled integration of fluid flow and three-dimensional (3D) co-cultures with perivascular cells to mimic tissue- or organ-level physiology and dysfunction in vitro. Here, we review recent multidisciplinary developments in these advanced experimental models of blood vessels that combine hiPSC with microfluidic organ-on-chip technology. We provide examples of their utility in various research areas and discuss steps necessary for further integration in biomedical applications so that they can be contribute effectively to the evaluation and development of new drugs and other therapeutics as well as personalized (patient-specific) treatments.
The capability to derive endothelial cell (ECs) from induced pluripotent stem cells (iPSCs) holds huge therapeutic potential for cardiovascular disease. This study elucidates the precise role of the RNA‐binding protein Quaking isoform 5 (QKI‐5) during EC differentiation from both mouse and human iPSCs (hiPSCs) and dissects how RNA‐binding proteins can improve differentiation efficiency toward cell therapy for important vascular diseases. iPSCs represent an attractive cellular approach for regenerative medicine today as they can be used to generate patient‐specific therapeutic cells toward autologous cell therapy. In this study, using the model of iPSCs differentiation toward ECs, the QKI‐5 was found to be an important regulator of STAT3 stabilization and vascular endothelial growth factor receptor 2 (VEGFR2) activation during the EC differentiation process. QKI‐5 was induced during EC differentiation, resulting in stabilization of STAT3 expression and modulation of VEGFR2 transcriptional activation as well as VEGF secretion through direct binding to the 3′ UTR of STAT3. Importantly, mouse iPS‐ECs overexpressing QKI‐5 significantly improved angiogenesis and neovascularization and blood flow recovery in experimental hind limb ischemia. Notably, hiPSCs overexpressing QKI‐5, induced angiogenesis on Matrigel plug assays in vivo only 7 days after subcutaneous injection in SCID mice. These results highlight a clear functional benefit of QKI‐5 in neovascularization, blood flow recovery, and angiogenesis. Thus, they provide support to the growing consensus that elucidation of the molecular mechanisms underlying EC differentiation will ultimately advance stem cell regenerative therapy and eventually make the treatment of cardiovascular disease a reality. The RNA binding protein QKI‐5 is induced during EC differentiation from iPSCs. RNA binding protein QKI‐5 was induced during EC differentiation in parallel with the EC marker CD144. Immunofluorescence staining showing that QKI‐5 is localized in the nucleus and stained in parallel with CD144 in differentiated ECs (scale bar = 50 µm). stem cells 2017 Stem Cells 2017;35:952–966
Blood vessel models are increasingly recognized to have value in understanding disease and drug discovery. However, continued improvements are required to more accurately reflect human vessel physiology. Realistic three-dimensional (3D) in vitro cultures of human vascular cells inside microfluidic chips, or vessels-on-chips (VoC), could contribute to this since they can recapitulate aspects of the in vivo microenvironment by including mechanical stimuli such as shear stress. Here, we used human induced pluripotent stem cells as a source of endothelial cells (hiPSC-ECs), in combination with a technique called viscous finger patterning (VFP) toward this goal. We optimized VFP to create hollow structures in collagen I extracellular-matrix inside microfluidic chips. The lumen formation success rate was over 90% and the resulting cellularized lumens had a consistent diameter over their full length, averaging 336 ± 15 μ m. Importantly, hiPSC-ECs cultured in these 3D microphysiological systems formed stable and viable vascular structures within 48 h. Furthermore, this system could support coculture of hiPSC-ECs with primary human brain vascular pericytes, demonstrating their ability to accommodate biologically relevant combinations of multiple vascular cell types. Our protocol for VFP is more robust than previously published methods with respect to success rates and reproducibility of the diameter between- and within channels. This, in combination with the ease of preparation, makes hiPSC-EC based VoC a low-cost platform for future studies in personalized disease modeling.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.