Organic carbon is important in regulating ecosystem function, and its source and abundance may be altered by urbanization. We investigated shifts in organic carbon quantity and quality associated with urbanization and ecosystem restoration, and its potential effects on denitrification at the riparian–stream interface. Field measurements of streamwater chemistry, organic carbon characterization, and laboratory‐based denitrification experiments were completed at two forested, two restored, and two unrestored urban streams at the Baltimore Long‐Term Ecological Research site, Maryland, USA. Dissolved organic carbon (DOC) and nitrate loads increased with runoff according to a power‐law function that varied across sites. Stable isotopes and molar C:N ratios suggested that stream particulate organic matter (POM) was a mixture of periphyton, leaves, and grass that varied across site types. Stable‐isotope signatures and lipid biomarker analyses of sediments showed that terrestrial organic carbon sources in streams varied as a result of riparian vegetation. Laboratory experiments indicated that organic carbon amendments significantly increased rates of denitrification (35.1 ± 9.4 ng N·[g dry sediment]−1·h−1; mean ± SE) more than nitrate amendments (10.4 ± 4.0 ng N·[g dry sediment]−1·h−1) across streamflow conditions and sites. Denitrification experiments with naturally occurring carbon sources showed that denitrification was significantly higher with grass clippings from home lawns (1244 ± 331 ng N·g dry sediment−1·h−1), and overall unrestored urban sites showed significantly higher denitrification rates than restored and forest sites. We found that urbanization influences organic carbon sources and quality in streams, which can have substantial downstream impacts on ecosystem services such as denitrification.
The haptophyte Phaeocystis antarctica G. Karst. is a dominant phytoplankton species in the Ross Sea, Antarctica, and exists as solitary cells and mucilaginous colonies that differ by several orders of magnitude in size. Recent studies with Phaeocystis globosa suggest that colony formation and enlargement are defense mechanisms against small grazers. To test if a similar grazer-induced morphological response exists in P. antarctica, we conducted incubation experiments during the austral summer using natural P. antarctica and zooplankton assemblages. Dialysis bags that allowed exchange of dissolved chemicals were used to separate P. antarctica and zooplankton during incubations. Geometric mean colony size decreased by 35% in the control, but increased by 30% in the presence of grazers (even without physical contact) over the 15 d incubation.The estimated colonial-to-solitary cell carbon ratio was significantly higher in the grazing treatment. These results suggest that P. antarctica colonies would grow larger in the presence of indigenous zooplankton and skew the carbon partitioning significantly toward the colonial phase. While these observations show that the colony size of P. antarctica was affected by a chemical signal related to grazers, the detailed nature and ecological significance of this signal remain unknown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.