A significant amount of noteworthy articles reviewing different label-free biosensors are being published in the last years. Most of the times, the comparison among the different biosensors is limited by the procedure used of calculating the limit of detection and the measurement uncertainty. This article clarifies and establishes a simple procedure to determine the calibration function and the uncertainty of the concentration measured at any point of the measuring interval of a generic label-free biosensor. The value of the limit of detection arises naturally from this model as the limit at which uncertainty tends when the concentration tends to zero. The need to provide additional information, such as the measurement interval and its linearity, among others, on the analytical systems and biosensor in addition to the detection limit is pointed out. Finally, the model is applied to curves that are typically obtained in immunoassays and a discussion is made on the application validity of the model and its limitations.
The ability to monitor diseases, therapies, and their effects on the body is a critical component of modern care and personalized medicine. Real time monitoring can be achieved by analyzing body fluids or by applying sensors on, or alternatively, inside the body. Implantable sensors, however, must be removed. Second removal procedures lead to further tissue damage, which can be a problem in tissues such as those of the central nervous system. The use of biodegradable sensors alleviates these problems since they do not require removal procedures. Recent advances in material science made it possible for all sensor components to be biodegradable. Small size and power of implants, and the limited selection of materials are the main constraints determining the capabilities of the biodegradable device. Thus, the design will be always a challenge exploring a trade-off among these parameters. Despite of the encouraging results illustrating that biodegradable sensors can be as accurate and reliable as commercially available nondegradable ones, biodegradable implantable sensors are still in their infancy. Significant advances made in this area are critically reviewed in this paper, and future prospects are highlighted.
In this Letter, we demonstrate for the first time the experimental capability for the biochemical sensing of resonant nanopillars (RNPs) arrays. These arrays are fabricated over a glass substrate and are optically integrated from the backside of this substrate. The reflectivity profiles of the RNPs arrays are measured by infiltrating different ethanol fractions in water in order to evaluate the optical response for the different refractive indexes, which range from 1.330 to 1.342. A linear fit of the resonant modes shift is observed as a function of the bulk refractive index of the liquid infiltrated. For the type of transducer analyzed, a relative sensitivity of 10017 cm(-1)/Refractive Index Unit (RIU) is achieved, allowing us to reach a competitive Limit of Detection (LoD) in the order of 1×10(-5) RIU.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.