In a worldwide collaborative effort, 19,630 Y-chromosomes were sampled from 129 different populations in 51 countries. These chromosomes were typed for 23 short-tandem repeat (STR) loci (DYS19, DYS389I, DYS389II, DYS390, DYS391, DYS392, DYS393, DYS385ab, DYS437, DYS438, DYS439, DYS448, DYS456, DYS458, DYS635, GATAH4, DYS481, DYS533, DYS549, DYS570, DYS576, and DYS643) and using the PowerPlex Y23 System (PPY23, Promega Corporation, Madison, WI). Locus-specific allelic spectra of these markers were determined and a consistently high level of allelic diversity was observed. A considerable number of null, duplicate and off-ladder alleles were revealed. Standard single-locus and haplotype-based parameters were calculated and compared between subsets of Y-STR markers established for forensic casework. The PPY23 marker set provides substantially stronger discriminatory power than other available kits but at the same time reveals the same general patterns of population structure as other marker sets. A strong correlation was observed between the number of Y-STRs included in a marker set and some of the forensic parameters under study. Interestingly a weak but consistent trend toward smaller genetic distances resulting from larger numbers of markers became apparent.
A retrospective study was carried out on postmortem examination data of 131 sharp force-related casualties recorded by the Brescia Institute of Forensic Medicine between 1982 and 2012. The objective was to identify relevant parameters that may be used to distinguish the manner of deaths between homicide, suicide, and accident. The following variables were considered: manner of death; demographic data; scene; type of sharp object; location and numbers of wounds; the presence of hesitation marks/defense wounds; toxicological findings; psychiatric history. There were 92 homicides, 28 suicides, and 11 accidents. Most victims were male, with an average age of 43. Injuries in isolation were present in 9.8% of homicides, in 35.7% of suicides, and in 54.5% of accidents. Most injuries involved the left anterior chest in homicides and the forearms in suicides. This study underlines the importance of a meticulous postmortem examination of injuries on the body and their relationship with other results from the death scene investigation.
The role of DNA damage in PCR processivity/fidelity is a relevant topic in molecular investigation of aged/forensic samples. In order to reproduce one of the most common lesions occurring in postmortem tissues, a new protocol based on aqueous hydrolysis of the DNA was developed in vitro. Twenty-five forensic laboratories were then provided with 3.0 μg of a trial sample (TS) exhibiting, in mean, the loss of 1 base of 20, and a molecular weight below 300 bp. Each participating laboratory could freely choose any combination of methods, leading to the quantification and to the definition of the STR profile of the TS, through the documentation of each step of the analytical approaches selected. The results of the TS quantification by qPCR showed significant differences in the amount of DNA recorded by the participating laboratories using different commercial kits. These data show that only DNA quantification "relative" to the used kit (probe) is possible, being the "absolute" amount of DNA inversely related to the length of the target region (r(2) = 0.891). In addition, our results indicate that the absence of a shared stable and certified reference quantitative standard is also likely involved. STR profiling was carried out selecting five different commercial kits and amplifying the TS for a total number of 212 multiplex PCRs, thus representing an interesting overview of the different analytical protocols used by the participating laboratories. Nine laboratories decided to characterize the TS using a single kit, with a number of amplifications varying from 2 to 12, obtaining only partial STR profiles. Most of the participants determined partial or full profiles using a combination of two or more kits, and a number of amplifications varying from 2 to 27. The performance of each laboratory was described in terms of number of correctly characterized loci, dropped-out markers, unreliable genotypes, and incorrect results. The incidence of unreliable and incorrect genotypes was found to be higher for participants carrying out a limited number of amplifications, insufficient to define the correct genotypes from damaged DNA samples such as the TS. Finally, from a dataset containing about 4500 amplicons, the frequency of PCR artifacts (allele dropout, allele drop-in, and allelic imbalance) was calculated for each kit showing that the new chemistry of the kits is not able to overcome the concern of template-related factors. The results of this collaborative exercise emphasize the advantages of using a standardized degraded DNA sample in the definition of which analytical parameters are critical for the outcome of the STR profiles.
Recently introduced rapidly mutating Y-chromosomal short tandem repeat (RM Y-STR) loci, displaying a multiple-fold higher mutation rate relative to any other Y-STRs, including those conventionally used in forensic casework, have been demonstrated to improve the resolution of male lineage differentiation and to allow male relative separation usually impossible with standard Y-STRs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.