In a companion paper by Koposov et al., RR Lyrae from Gaia Data Release 2 are used to demonstrate that stars in the Orphan stream have velocity vectors significantly misaligned with the stream track, suggesting that it has received a large gravitational perturbation from a satellite of the Milky Way. We argue that such a mismatch cannot arise due to any realistic static Milky Way potential and then explore the perturbative effects of the Large Magellanic Cloud (LMC). We find that the LMC can produce precisely the observed motiontrack mismatch and we therefore use the Orphan stream to measure the mass of the Cloud. We simultaneously fit the Milky Way and LMC potentials and infer that a total LMC mass of 1.38 +0.27 −0.24 × 10 11 M is required to bend the Orphan Stream, showing for the first time that the LMC has a large and measurable effect on structures orbiting the Milky Way. This has far-reaching consequences for any technique which assumes that tracers are orbiting a static Milky Way. Furthermore, we measure the Milky Way mass within 50 kpc to be 3.80 +0.14 −0.11 × 10 11 M . Finally, we use these results to predict that, due to the reflex motion of the Milky Way in response to the LMC, the outskirts of the Milky Way's stellar halo should exhibit a bulk, upwards motion.
According to LCDM theory, hierarchical evolution occurs on all mass scales, implying that satellites of the Milky Way should also have companions. The recent discovery of ultra-faint dwarf galaxy candidates in close proximity to the Magellanic Clouds provides an opportunity to test this theory. We present proper motion (PM) measurements for 13 of the 32 new dwarf galaxy candidates using Gaia data release 2. All 13 also have radial velocity measurements. We compare the measured 3D velocities of these dwarfs to those expected at the corresponding distance and location for the debris of an LMC analog in a cosmological numerical simulation. We conclude that 4 of these galaxies (Hor1, Car2, Car3 and Hyi1) have come in with the Magellanic Clouds, constituting the first confirmation of the type of satellite infall predicted by LCDM. Ret2, Tuc2 and Gru1 have velocity components that are not consistent within 3 sigma of our predictions and are therefore less favorable. Hya2 and Dra2 could be associated with the LMC and merit further attention. We rule out Tuc3, Cra2, Tri2 and Aqu2 as potential members. Of the dwarfs without measured PMs, 5 of them are deemed unlikely on the basis of their positions and distances alone as being too far from the orbital plane expected for LMC debris (Eri2, Ind2, Cet2, Cet3 and Vir1). For the remaining sample, we use the simulation to predict PMs and radial velocities, finding that Phx2 has an overdensity of stars in DR2 consistent with this PM prediction.
We use astrometry, broad-band photometry and variability information from the Data Release 2 of ESA's Gaia mission (GDR2) to identify members of the Orphan Stream (OS) across the whole sky. The stream is traced above and below the celestial equator and in both Galactic hemispheres, thus increasing its visible length to ∼ 210 • equivalent to ∼ 150 kpc in physical extent. Taking advantage of the large number of RR Lyrae stars in the OS, we extract accurate distances and proper motions across the entire stretch of the tidal debris studied. As delineated by the GDR2 RR Lyrae, the stream exhibits two prominent twists in its shape on the sky which are accompanied by changes in the tangential motion. We complement the RR Lyrae maps with those created using GDR2 Red Giants and the DECam Legacy Survey Main Sequence Turn-Off stars. The behavior of the OS track on the sky is consistent across all three tracers employed. We detect a strong non-zero motion in the across-stream direction for a substantial portion of the stream. Such a misalignment between the debris track and the streaming velocity cannot be reproduced in a static gravitational potential and signals an interaction with a massive perturber.
We extend our previous calibration of the infrared Ca ii triplet as metallicity indicator to the metal-poor regime by including observations of 55 field stars with [Fe/H] down to -4.0 dex. While we previously solved the saturation at high-metallicity using a combination of a Lorentzian plus a Gaussian to reproduce the line profiles, in this paper we address the non-linearity at low-metallicity following the suggestion of Starkenburg et al. (2010) of adding two non-linear terms to the relation among the [Fe/H], luminosity, and strength of the Calcium triplet lines. Our calibration thus extends from -4.0 to +0.5 in metallicity and is presented using four different luminosity indicators: V-V HB , M V , M I , and M K . The calibration obtained in this paper results in a tight correlation between [Fe/H] abundances measured from high resolution spectra and [Fe/H] values derived from the CaT, over the whole metallicity range covered.
Line-of-sight kinematic studies indicate that many Galactic globular clusters have a significant degree of internal rotation. However, three-dimensional kinematics from a combination of proper motions and line-of-sight velocities are needed to unveil the role of angular momentum in the formation and evolution of these old stellar systems. Here we present the first quantitative study of internal rotation on the plane-of-the-sky for a large sample of globular clusters using proper motions from Gaia DR2. We detect signatures of rotation in the tangential component of proper motions for 11 out of 51 clusters at a >3-sigma confidence level, confirming the detection reported in Gaia Collaboration et al. (2018a) for 8 clusters, and additionally identify 11 GCs with a 2sigma rotation detection. For the clusters with a detected global rotation, we construct the two-dimensional rotation maps and proper motion rotation curves, and we assess the relevance of rotation with respect to random motions (V /σ ∼ 0.08 − 0.51). We find evidence of a correlation between the degree of internal rotation and relaxation time, highlighting the importance of long-term dynamical evolution in shaping the clusters current properties. This is a strong indication that angular momentum must have played a fundamental role in the earliest phases of cluster formation. Finally, exploiting the spatial information of the rotation maps and a comparison with line-ofsight data, we provide an estimate of the inclination of the rotation axis for a subset of 8 clusters. Our work demonstrates the potential of Gaia data for internal kinematic studies of globular clusters and provides the first step to reconstruct their intrinsic three-dimensional structure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.