Complete D-loop sequences of 20 Mus from three localities in Turkey and seven in Iran were characterized. These countries are thought to be close to the place of origin of the subspecies Mus musculus domesticus. Five new M. m. domesticus haplotypes were added to the nine already known for the region. Four of these 14 haplotypes were very similar to the consensus D-loop sequence for western Europe defined by Nachman et al. (1994), which may represent the ancestral condition for M. m. domesticus. A divergent mtDNA lineage is found in various parts of Turkey and northern Iran; it has spread into western Europe, but other European lineages were not found in either Turkey or Iran. The other Mus D-loop sequences were of M. m. castaneus and Mus macedonicus and confirmed M. macedonicus as a monotypic species with low nucleotide diversity. The prevalence of the standard 40-chromosome complement in this region is particularly interesting with regards M. m. domesticus, as it is consistent with the in situ origin of Robertsonian karyotypic races (2n < 40) in western Europe.
ABSTRACT.The results are presented of a new program of radiocarbon dating undertaken on 88 human skeletons. The individuals derived from Eneolithic to Early Iron Age sites-Afanasievo, Okunevo, Andronovo (Fedorovo), Karasuk, and Tagar cultures-in the Minusinsk Basin of Southern Siberia. All the new dates have been acquired from human bone, which is in contrast to some of the previous dates for this region obtained from wood and thus possibly unreliable due to old-wood effects or re-use of the timber. The new data are compared with the existing 14 C chronology for the region, thereby enabling a clearer understanding to be gained concerning the chronology of these cultures and their place within the prehistory of the Eurasian steppes.
Chromosomal rearrangements are proposed to promote genetic differentiation between chromosomally differentiated taxa and therefore promote speciation. Due to their remarkable karyotypic polymorphism, the shrews of the Sorex araneus group were used to investigate the impact of chromosomal rearrangements on gene flow. Five intraspecific chromosomal hybrid zones characterized by different levels of karyotypic complexity were studied using 16 microsatellites markers. We observed low levels of genetic differentiation even in the hybrid zones with the highest karyotypic complexity. No evidence of restricted gene flow between differently rearranged chromosomes was observed. Contrary to what was observed at the interspecific level, the effect of chromosomal rearrangements on gene flow was undetectable within the S. araneus species.
Chromosomal races of the common shrew differ in sets of metacentric chromosomes and on contact may produce hybrids with extraordinarily complex configurations at meiosis I that are associated with reduced fertility. There is an expectation that these may be some of the most extreme tension zones available for study and therefore are of interest as potential sites for reproductive isolation. Here, we analyse one of these zones, between the Novosibirsk race (characterized by metacentrics go, hn, ik, jl, mp and qr) and the Tomsk race (metacentrics gk, hi, jl and mn and acrocentrics o, p, q and r), which form hybrids with a chain‐of‐nine (CIX) and a chain‐of‐three (CIII) configuration at meiosis I. At the Novosibirsk–Tomsk hybrid zone, the CIX chromosomes form clines of 8.53 km standardized width on average, whereas the cline for the CIII chromosomes was 52.83 km wide. The difference in these cline widths fits with the difference in meiotic errors expected with the CIX and CIII configuration, and we produce estimates of selection against hybrids with these types of configurations, which we relate to dispersal and age of the hybrid zone. The hybrid zone is located at the isocline at 200 m altitude above sea level; this relationship between the races and altitude is suggested at both coarse and fine scales. This indicates adaptive differences between the races that may in turn have been promoted by the chromosome differences. Thus, the extreme chromosomal divergence between the Novosibirsk and Tomsk may be associated with genic differentiation, but it is still striking that, despite the large chromosomal differences, reproductive isolation between the Novosibirsk and Tomsk races has not occurred.
Sorex araneus, the Common shrew, is a species with more than 70 karyotypic races, many of which form parapatric hybrid zones, making it a model for studying chromosomal speciation. Hybrids between races have reduced fitness, but microsatellite markers have demonstrated considerable gene flow between them, calling into question whether the chromosomal barriers actually do contribute to genetic divergence. We studied phenotypic clines across two hybrid zones with especially complex heterozygotes. Hybrids between the Novosibirsk and Tomsk races produce chains of nine and three chromosomes at meiosis, and hybrids between the Moscow and Seliger races produce chains of eleven. Our goal was to determine whether phenotypes show evidence of reduced gene flow at hybrid zones. We used maximum likelihood to fit tanh cline models to geometric shape data and found that phenotypic clines in skulls and mandibles across these zones had similar centers and widths as chromosomal clines. The amount of phenotypic differentiation across the zones is greater than expected if it were dissipating due to unrestricted gene flow given the amount of time since contact, but it is less than expected to have accumulated from drift during allopatric separation in glacial refugia. Only if heritability is very low, Ne very high, and the time spent in allopatry very short, will the differences we observe be large enough to match the expectation of drift. Our results therefore suggest that phenotypic differentiation has been lost through gene flow since post-glacial secondary contact, but not as quickly as would be expected if there was free gene flow across the hybrid zones. The chromosomal tension zones are confirmed to be partial barriers that prevent differentiated races from becoming phenotypically homogenous.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.