The impact of oral commensal and pathogenic bacteria on peri‐implant mucosa is not well understood, despite the high prevalence of peri‐implant infections. Hence, we investigated responses of the peri‐implant mucosa to Streptococcus oralis or Aggregatibacter actinomycetemcomitans biofilms using a novel in vitro peri‐implant mucosa‐biofilm model. Our 3D model combined three components, organotypic oral mucosa, implant material, and oral biofilm, with structural assembly close to native situation. S. oralis induced a protective stress response in the peri‐implant mucosa through upregulation of heat shock protein (HSP70) genes. Attenuated inflammatory response was indicated by reduced cytokine levels of interleukin‐6 (IL‐6), interleukin‐8 (CXCL8), and monocyte chemoattractant protein‐1 (CCL2). The inflammatory balance was preserved through increased levels of tumor necrosis factor‐alpha (TNF‐α). A. actinomycetemcomitans induced downregulation of genes important for cell survival and host inflammatory response. The reduced cytokine levels of chemokine ligand 1 (CXCL1), CXCL8, and CCL2 also indicated a diminished inflammatory response. The induced immune balance by S. oralis may support oral health, whereas the reduced inflammatory response to A. actinomycetemcomitans may provide colonisation advantage and facilitate later tissue invasion. The comprehensive characterisation of peri‐implant mucosa‐biofilm interactions using our 3D model can provide new knowledge to improve strategies for prevention and therapy of peri‐implant disease.
During the last years, the popularity of saliva has been increasing for its applicability as a diagnostic fluid. Blood biomarker molecules have to cross the blood-saliva barrier (BSB) in order to appear in saliva. The BSB consists of all oral and salivary gland epithelial barriers. Within this context, the optimization of in vitro models for mechanistic studies about the transport of molecules across the oral mucosa is an important task. Here, we describe the optimization and comprehensive characterization of a Transwell model of the oral mucosa based on the epithelial cell line TR146. Through systematic media optimization investigating 12 different setups , a significant increase of barrier integrity upon airlift cultivation was achieved for TR146 cell layers. The distinct improvement of the paracellular barrier was shown by measurements of transepithelial electrical resistance (TEER) and carboxyfluorescein permeability assays. Histological characterization supported TEER data and showed a stratified, non-keratinized multilayer of the optimized TR146 model. High-Throughput qPCR using 96 selected markers for keratinization, cornification, epithelial-mesenchymal transition, aquaporins, mucins, tight junctions, receptors, and transporter proteins was applied to comprehensively characterize the systematic optimization of the cellular model and validate against human biopsy samples. Data revealed the expression of several genes in the oral mucosa epithelium for the first time and elucidated novel regulations dependent on culture conditions. Moreover, functional activity of ABC transporters ABCB1 and ABCC4 was shown indicating the applicability of the model for drug transport studies. In conclusion, a Transwell model of the oral mucosa epithelium was optimized being suitable for transport studies.
Background Reconstructed human epidermis (RhE) is widely used to replace animal models in order to assess the proinflammatory and allergenic effects of chemicals. Unfortunately, RhE lacks proinflammatory responsiveness for metal haptens, which are the most prevalent human contact allergens, raising concerns about its reliability for predicting skin allergens. Objectives To investigate whether this limitation of RhE might be attributable to a lack of functional expression of Toll‐like receptor 4 (TLR4), which governs proinflammatory sensitivity to nickel and cobalt. Materials and Methods RhE, dendritic cell (DC)‐containing RhE and full‐thickness skin equivalent (FTSE) were compared regarding their proinflammatory responsiveness to metal allergens. Results The incorporation of dermal fibroblasts was sufficient to confer metal sensitivity to RhE. Unlike keratinocytes, normal human fibroblasts expressed high levels of TLR4 mRNA and induced interleukin‐8 expression upon stimulation with nickel or cobalt. Consistently, dermal isolates from FTSE expressed considerable amounts of TLR4 mRNA, whereas RhE or epidermis isolated from FTSE, normal human epidermis or inflamed human epidermis failed to express TLR4. Similarly, co‐culture with TLR4‐positive DCs bestowed RhE with proinflammatory responsiveness to metals. Conclusion Our data suggest that FTSE or DC/RhE co‐culture models can circumvent the shortcomings of RhE assays, and combine the benefits of complex and monoculture‐based test systems in a single assay.
During the last decades climate change is being felt in many parts of the world. In many cities, the temperature rise is intensified by urban projects which morphologies difficult ventilation, increase absorption areas and areas of reflection of sunlight. Consequently, the local microclimate is altered and the temperature rise is felt more intensely by the population. Urban form and typology of buildings can affect local microclimate creating or avoiding, for example, the greenhouse effect. This article aims to study the changes of morphology and typology of Copacabana since 1930 that might have led to these changes. Results from previous studies were used. These studies were done using virtual simulations of ventilation and temperature, as well as physical simulations with models of parts of Copacabana in a tunnel of wind, verifying changes in ventilation and local temperature in the past 80 years. In this study were used data from simulations confronted with the morphologies of the neighborhood in the 1930s, 1950 and 2010, in order to check the influence of the typological and morphological changes in the results obtained. For this study were considered analytic categories described in the literature for the analysis of sustainable urban projects. The study confirmed the initial hypotheses in which the morphological changes in an urban project can have direct consequences on the environment, as was the case of Copacabana area in which there was a considerable rise in temperature and a change in the pattern of ventilation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.