Summary. This paper extends the singular value decomposition to a path of matrices E(t). An analytic singular value decomposition of a path of matrices E(t) is an analytic path of factorizations E(t) = X(t)S(t)Y(t) T where X(t)and Y(t) are orthogonal and S(t) is diagonal. To maintain differentiability the diagonal entries of S(t) are allowed to be either positive or negative and to appear in any order. This paper investigates existence and uniqueness of analytic SVD's and develops an algorithm for computing them. We show that a real analytic path E(t) always admits a real analytic SVD, a full-rank, smooth path E(t) with distinct singular values admits a smooth SVD. We derive a differential equation for the left factor, develop Euler-like and extrapolated Euler-like numerical methods for approximating an analytic SVD and prove that the Euler-like method converges.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.