Velocity overshoot phenomena in Ga0.47In0.53As to the application of uniform electric fields are investigated using recent values of the material parameters. The effects of the ambient temperature and of the doping concentration are studied. The material is found to yield peak drift velocities larger than those in GaAs. The values of the peak velocity are greater for short lengths of the active region, low impurity concentration, and low ambient temperatures.
The richer variety of Klein-Gordon basis is already established for discrete breathers in metamatetrials. Based on this attempt, we show various anomalous Fano resonance behaviors that have been experimentally observed, but cannot be explained by nonlinear Schrodinger model. Certain material parameters of Klein-Gordon lattice in metamaterials are related for the first time with characteristics of Fano resonance, which can be utilized for beam filtering and for high-resolution biological sensing technology. Although relations with coupling and other parameters exist, the most remarkable relation is observed with linear permittivity that could control the wave transmission characteristics in metamaterials for applications in optical engineering.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.