ObjectivesRare pathogenic variants in the SPINK1, PRSS1, CTRC, and CFTR genes have been strongly associated with a risk of developing chronic pancreatitis (CP). However, their potential impact on the age of disease onset and clinical outcomes, as well as their potential interactions with environmental risk factors, remain unclear. These issues are addressed here in a large Chinese CP cohort.MethodsWe performed targeted next-generation sequencing of the four CP-associated genes in 1061 Han Chinese CP patients and 1196 controls. To evaluate gene–environment interactions, the patients were divided into three subgroups, idiopathic CP (ICP; n = 715), alcoholic CP (ACP; n = 206), and smoking-associated CP (SCP; n = 140). The potential impact of rare pathogenic variants on the age of onset of CP and clinical outcomes was evaluated using the Kaplan–Meier model.ResultsWe identified rare pathogenic genotypes involving the SPINK1, PRSS1, CTRC, and/or CFTR genes in 535 (50.42%) CP patients but in only 71 (5.94%) controls (odds ratio = 16.12; P < 0.001). Mutation-positive patients had significantly earlier median ages at disease onset and at diagnosis of pancreatic stones, diabetes mellitus and steatorrhea than mutation-negative ICP patients. Pathogenic genotypes were present in 57.1, 39.8, and 32.1% of the ICP, ACP, and SCP patients, respectively, and influenced age at disease onset and clinical outcomes in all subgroups.ConclusionsWe provide evidence that rare pathogenic variants in the SPINK1, PRSS1, CTRC, and CFTR genes significantly influence the age of onset and clinical outcomes of CP. Extensive gene–environment interactions were also identified.
Aggregation‐caused fluorescence quenching with insufficient production of reactive oxygen species (ROS) has limited the application of photosensitizers (PSs) in fluorescence‐imaging‐guided photodynamic therapy (PDT). Aggregation‐induced emission PSs (AIE‐PSs) exhibit enhanced fluorescence intensity and a high efficiency of ROS generation in the aggregation state, which provides an opportunity to solve the above problems. Herein, a series of AIE‐PSs are successfully designed and synthesized by adjusting the D–A intensity through molecular engineering. The photophysical properties and theoretical calculations prove that the synergistic effect of 3,4‐ethylenedioxythiophene and quinolinium increases the intramolecular charge transfer effect (ICT) of the whole molecule and promotes the intersystem crossing (ISC) from the lowest excited singlet state (S1) to the lowest triplet state (T1). Among these AIE‐PSs, the optimal AIE‐PS (TPA‐DT‐Qy) exhibits the highest generation yield of 1O2 (5.3‐fold of Rose Bengal). Further PDT experiments show that the TPA‐DT‐Qy has a highly efficient photodynamic ablation of breast cancer cells (MCF‐7 and MDA‐MB‐231) under white light irradiation. Moreover, the photodynamic antibacterial study indicates that TPA‐DT‐Qy has the discrimination and excellent photodynamic inactivation of S. aureus. This work provides a feasible strategy for the molecular engineering of novel AIE‐PSs to improve the development of fluorescence‐imaging‐guided PDT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.