Aggregation‐caused fluorescence quenching with insufficient production of reactive oxygen species (ROS) has limited the application of photosensitizers (PSs) in fluorescence‐imaging‐guided photodynamic therapy (PDT). Aggregation‐induced emission PSs (AIE‐PSs) exhibit enhanced fluorescence intensity and a high efficiency of ROS generation in the aggregation state, which provides an opportunity to solve the above problems. Herein, a series of AIE‐PSs are successfully designed and synthesized by adjusting the D–A intensity through molecular engineering. The photophysical properties and theoretical calculations prove that the synergistic effect of 3,4‐ethylenedioxythiophene and quinolinium increases the intramolecular charge transfer effect (ICT) of the whole molecule and promotes the intersystem crossing (ISC) from the lowest excited singlet state (S1) to the lowest triplet state (T1). Among these AIE‐PSs, the optimal AIE‐PS (TPA‐DT‐Qy) exhibits the highest generation yield of 1O2 (5.3‐fold of Rose Bengal). Further PDT experiments show that the TPA‐DT‐Qy has a highly efficient photodynamic ablation of breast cancer cells (MCF‐7 and MDA‐MB‐231) under white light irradiation. Moreover, the photodynamic antibacterial study indicates that TPA‐DT‐Qy has the discrimination and excellent photodynamic inactivation of S. aureus. This work provides a feasible strategy for the molecular engineering of novel AIE‐PSs to improve the development of fluorescence‐imaging‐guided PDT.
geon". Nanomachines can be manipulated inside the human body to break through biological barriers for drug delivery, [2] diagnosis, [3] and active elimination of tumor cells using mechano-destruction. [4] Efficient conversion of energy into a mechanical motion is the basis for actuating nanomachines to achieve multiple functions. Compared with chemical fuels, [5] external fields, such as magnetic, light, ultrasonic, and electric fields, are considered more appropriate for in vivo applications owing to their high controllability. [6] Among various propelling platforms, magnetically driven nanomachines are promising candidates with biocompatibility and deep-tissue controllability for in vivo applications. [7] A typical magneticfield-actuated method is a magnetic force and torque-powered propulsion under alternating magnetic fields. [8] Using this method, nanomachines generate piconewton forces, and thus they can be utilized for precise cancer cell destruction. [9] Moreover, owing to the complex environment and biological barriers in vivo, achieving an efficient mechanical energy conversion remains a major challenge for designing nanoscale motors. At present, assembly approaches and strong magnetic field setups are typically used to enhance the mechanical energy output in vivo, which put forward high requirements for instrument development. [10] To overcome the viscous bioenvironment, the development of Nanomachines with active propulsion have emerged as an intelligent platformfor targeted cancer therapy. Achieving an efficient locomotion performance using an external energy conversion is a key requirement in the design of nanomachines. In this study, inspired by diverse spiky structures in nature, a photomagnetically powered nanomachine (PMN) with a spiky surface and thermally dependent viscosity tunability is proposed to facilitate mechanical motion in lysosomes for cancer mechanotherapy. The hybrid nanomachine is integrated with magnetic nanoparticles as the core and covered with gold nanotips. Physical simulations and experimental results prove that the spiky structure endows nanomachines with an obvious photomagnetic coupling effect in the NIR-II region through the alignment and orienting movement of plasmons on the gold tips. Using a coupling-enhanced magnetic field, PMNs are efficiently assembled into chain-like structures to further elevate energy conversion efficiency. Notably, PMNs with the thermal control of viscosity are efficiently propelled under simultaneously applied dual external energy sources in cell lysosomes. Enhanced mechanical destruction of cancer cells via PMNs is confirmed both in vitro and in vivo under photomagnetic treatment. This study provides a new direction for designing integrated nanomachines with active adaptability to physiological environments for cancer treatment.
Herein, five aggregation-induced emission (AIE) photosensitizers (PSs) with D-π-A structures, are smoothly designed and synthesized through donor and acceptor engineering. The photophysical properties and theoretical calculation results show that the...
Intercellular interactions play a significant role in various complex biological processes, and their dysregulation promotes disease progression. To reveal the mechanisms of intercellular interactions without destroying basic life processes, it is necessary to mimic multicellular behaviors in vitro. However, the precise control of multicellular systems remains technically challenging owing to dynamic interactions. Here, we used DNA as a molecular lock and key to sequentially assemble and disassemble different cell clusters in a programmed way, regulating intercellular interactions. Tagging the surface of live cells with cholesterol-modified DNA enabled dynamical intercellular assemblies. By consecutively adding corresponding metaphorical locks (attaching DNA strands) and keys (detaching DNA strands), clusters of different cells could be sequentially formed. This strategy improved the capability of natural killer NK-92 cells to target tumor cells, improving the antitumor therapy efficacy. Our suggested approach allows dynamic regulation of intercellular interactions in complex cell systems and increases understanding of intercellular communication networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.