The molecular organization of streptavidin (SA) bound to aqueous surface monolayers of biotin-functionalized lipids and binary lipid mixtures has been investigated with neutron reflectivity and electron and fluorescence microscopy. The substitution of deuterons (2H) for protons (1H), both in subphase water molecules and in the alkyl chains of the lipid surface monolayer, was utilized to determine the interface structure on the molecular length scale. In all cases studied, the protein forms monomolecular layers underneath the interface with thickness values of approximately 40 A. A systematic dependence of the structural properties of such self-assembled SA monolayers on the surface chemistry was observed: the lateral protein density depends on the length of the spacer connecting the biotin moiety and its hydrophobic anchor. The hydration of the lipid head groups in the protein-bound state depends on the dipole moment density at the interface.
Isolated protein subunits of the crystalline bacterial cell surface layer (S-layer) of Bacillus coagulans E38-66 have been recrystallized on one side of planar black lipid membranes (BLMs) and their influence on the electrical properties, rupture kinetics and mechanical stability of the BLM was investigated. The effect on the boundary potential, the capacitance or the conductance of the membrane was negligible whereas the mechanical properties were considerably changed. The mechanical stability was characterized by applying voltage pulses or ramps to induce irreversible rupture. The amplitude of the voltage pulse leading to rupture allows conclusions on the ability of membranes to resist external forces. Surprisingly, these amplitudes were significantly lower for composite S-layer/lipid membranes compared to undecorated BLMs. In contrast, the delay time between the voltage pulse and the appearance of the initial defect was found to be drastically longer for the S-layer-supported lipid bilayer. Furthermore, the kinetics of the rupture process was recorded. Undecorated membranes show a fast linear increase of the pore conductance in time, indicating an inertia-limited defect growth. The attachment of an S-layer causes a slow exponential increase in the conductance during rupture, indicating a viscosity-determined widening of the pore. In addition, the mechanical properties on a longer time scale were investigated by applying a hydrostatic pressure across the BLMs. This causes the BLM to bulge, as monitored by an increase in capacitance. Compared to undecorated BLMs, a significantly higher pressure gradient has to be applied on the S-layer face of the composite BLMs to observe any change in capacitance.
Here we brieÑy summarize our recent e †orts in stabilization of giant planar lipid membranes and provide the Ðrst promising results achieved with a new technique. A water-soluble polymer can be coupled to lipid membranes either electrostatically or via a hydrophobic linker. Such coated membranes are signiÐcantly destabilized and the rupture process is slowed down. In contrast, partitioning of hydrophobic styrene monomer into the lipid membrane and its polymerization lead to an increase in stability. A short electric Ðeld pulse under controlled conditions was applied to quantify the stability. Voltages above 1.2 V are required to induce an electrical discharge. Within less than 100 ls these defects reseal. However, after resealing, the stability of this particular lipid membrane corresponds to that of a lipid membrane without a 2-D polymer network. We suggest the use of this technique to stabilize self-assembled lipid membrane structures.
We investigate the stability and rupture kinetics of planar lipid membranes covered with electrostatically adsorbed polyelectrolytes. After black lipid membranes were formed from negatively charged lipids, polylysines (PLs) of different molecular weights (MW) were added on one or on both sides of the membrane. The adsorption of PL was detected by recording changes of the transmembrane voltage. Rupture was induced by applying short voltage pulses across the membrane. The voltage causing breakdown of the membrane gives information on its mechanical stability. Adsorption of PL on one side of the membrane leads to an asymmetric transmembrane potential, which adds to the externally applied voltage. High MW PL decreases the critical breakdown voltage of the membrane significantly but also increases the delay time between the voltage pulse and pore formation. It is further shown that PL alters the time course of pore widening in a molecular weight-dependent manner. Low MW PL-decorated membranes and undecorated membranes show a fast rupture determined by inertia. In contrast, adsorption of high MW PLs causes a dramatic decrease of the rupture velocity. In this case, the rupture velocity is determined by viscosity. An analysis of the rupture kinetics allows an estimate of the 2D viscosity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.