Creatinine is the most important parameter to be determined in the diagnosis of renal, muscular and thyroid function. The most common method for the determination of creatinine is Jaffe's reaction, a routine practice for blood and urine analysis. However, in cases of icteric and haemolyzed blood samples, interference occurs during the estimation of creatinine by other constituents present in the blood like bilirubin, creatine, and urea, which lead to wrong diagnosis. To overcome such difficulty, we have developed a silver nanoparticle (Ag NPs) based sensor for the selective determination of creatinine. In this study, a new approach has been given to the traditional Jaffe's reaction, by coating Ag NPs with picric acid (PA) to form an assembly that can selectively detect creatinine. The Ag NPs based sensor proficiently and selectively recognizes creatinine due to the ability of picric acid to bind with it and form a complex. The nanoassembly and the interactions were investigated by transmission electron microscopy (TEM), dynamic light scattering (DLS) analysis, UV-Vis spectroscopy, FT-IR spectroscopy and ESI-MS, which demonstrated the binding affinity of creatinine with PA-capped Ag NPs. A linear correlation was obtained in the range of 0.01 μM-1 μM with an R(2) value of 0.9998 and a lower detection limit of 8.4 nM. The sensor was successfully applied to different types of blood and CSF samples for the determination of creatinine, and the results were compared to that of the Jaffe's method. With the advantages of high sensitivity, selectivity and low sample volume, this method is potentially suitable for the on-site monitoring of creatinine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.