Creatinine is the most important parameter to be determined in the diagnosis of renal, muscular and thyroid function. The most common method for the determination of creatinine is Jaffe's reaction, a routine practice for blood and urine analysis. However, in cases of icteric and haemolyzed blood samples, interference occurs during the estimation of creatinine by other constituents present in the blood like bilirubin, creatine, and urea, which lead to wrong diagnosis. To overcome such difficulty, we have developed a silver nanoparticle (Ag NPs) based sensor for the selective determination of creatinine. In this study, a new approach has been given to the traditional Jaffe's reaction, by coating Ag NPs with picric acid (PA) to form an assembly that can selectively detect creatinine. The Ag NPs based sensor proficiently and selectively recognizes creatinine due to the ability of picric acid to bind with it and form a complex. The nanoassembly and the interactions were investigated by transmission electron microscopy (TEM), dynamic light scattering (DLS) analysis, UV-Vis spectroscopy, FT-IR spectroscopy and ESI-MS, which demonstrated the binding affinity of creatinine with PA-capped Ag NPs. A linear correlation was obtained in the range of 0.01 μM-1 μM with an R(2) value of 0.9998 and a lower detection limit of 8.4 nM. The sensor was successfully applied to different types of blood and CSF samples for the determination of creatinine, and the results were compared to that of the Jaffe's method. With the advantages of high sensitivity, selectivity and low sample volume, this method is potentially suitable for the on-site monitoring of creatinine.
Effect of p-sulfonatocalix[4]resorcinarene (PSC[4]R) on the solubility and bioavailability of a poorly water soluble drug lamotrigine (LMN) and computational investigation3
A series of novel cationic fullerene derivatives bearing a substituted-quinazolin-4(3H)-one moiety as a side arm were synthesized using the 1,3-dipolar cycloaddition reaction of C60 with azomethine ylides generated from the corresponding Schiff bases of substituted quinazolinones. The synthesized compounds 5a-f were characterized by elemental analysis, FT-IR, 1H NMR, 13C NMR, and ESI-MS and screened for their antibacterial activity against Mycobacterium tuberculosis (H37RV) and antimicrobial activity against selected Gram-positive (Staphylococcus aureus and S. pyogenes) and Gram-negative (Pseudomonas aeruginosa, Klebsiella pneumonia and Escherichia coli) bacterial and fungal strains (Candida albicans, Aspergillus clavatus, and A. niger), respectively. All the compounds exhibited significant activity, with the most effective compounds having MIC values and zones of inhibition comparable to those of standard drugs.
The new 1:1 stoichiometry complex formation of curcumin-p-SC[4]R has been investigated with the aim to enhance the solubility, bioavailability, stability and anti-oxidant activity as well as decreased in vivo acute oral toxicity of curcumin by inclusion complexation. Thermodynamic parameters ∆S and ∆H are a negative value indicates that the inclusion complex was an exothermic process which occurred spontaneously. The inclusion complex was characterised by different analytical methods including FT-IR, PXRD, 1 H-NMR, SEM, DSC, ESI-Mass, UV-Vis spectroscopy and Elemental analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.